Full metadata record
DC FieldValueLanguage
dc.contributor.authorGau, Hwa-Longen_US
dc.contributor.authorWu, Pei Yuanen_US
dc.date.accessioned2014-12-08T15:45:11Z-
dc.date.available2014-12-08T15:45:11Z-
dc.date.issued2008en_US
dc.identifier.issn0308-1087en_US
dc.identifier.urihttp://hdl.handle.net/11536/30453-
dc.identifier.urihttp://dx.doi.org/10.1080/03081080701396051en_US
dc.description.abstractFor an n-by-n complex matrix A, we consider the numbers of line segments and elliptic arcs on the boundary partial derivative W(A) of its numerical range. We show that (a) if n >= 4 and A has an (n-1)-by-(n-1) submatrix B with W(B) an elliptic disc, then there can be at most 2n-2 line segments on partial derivative W(A), and (b) if n >= 3, then partial derivative W(A) contains at most (n-2) arcs of any ellipse. Moreover, both upper bounds are sharp. For nilpotent matrices, we also obtain analogous results with sharper bounds.en_US
dc.language.isoen_USen_US
dc.subjectnumerical rangeen_US
dc.subjectnilpotent matrixen_US
dc.titleLine segments and elliptic arcs on the boundary of a numerical rangeen_US
dc.typeArticle; Proceedings Paperen_US
dc.identifier.doi10.1080/03081080701396051en_US
dc.identifier.journalLINEAR & MULTILINEAR ALGEBRAen_US
dc.citation.volume56en_US
dc.citation.issue1-2en_US
dc.citation.spage131en_US
dc.citation.epage142en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000251676600009-
Appears in Collections:Conferences Paper


Files in This Item:

  1. 000251676600009.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.