Full metadata record
DC FieldValueLanguage
dc.contributor.authorLo, CCen_US
dc.contributor.authorChang, WHen_US
dc.date.accessioned2014-12-08T15:45:14Z-
dc.date.available2014-12-08T15:45:14Z-
dc.date.issued2000-06-01en_US
dc.identifier.issn1083-4419en_US
dc.identifier.urihttp://dx.doi.org/10.1109/3477.846234en_US
dc.identifier.urihttp://hdl.handle.net/11536/30487-
dc.description.abstractThe capacitated multipoint network design problem (CMNDP) is NP-complete, In this paper, a hybrid genetic algorithm for CMNDP is proposed. The multiobjective hybrid genetic algorithm (MOHGA) differs from other genetic algorithms (GA's) mainly in its selection procedure. The concept of subpopulation is used in MOHGA, Four subpopulations are generated according to the elitism reservation strategy, the shifting Prufer vector, the stochastic universal sampling, and the complete random method, respectively, Mixing these four subpopulations produces the next generation population. The MOHGA can effectively search the feasible solution space due to population diversity, The MOHGA has been applied to CMNDP. By examining computational and analytical results, we notice that the MOHGA can find most nondominated solutions and is much more effective and efficient than other multiobjective GA's.en_US
dc.language.isoen_USen_US
dc.subjectgenetic algorithmsen_US
dc.subjectminimal spanning treeen_US
dc.subjectmultiobjective functionen_US
dc.subjectnondominated solutionen_US
dc.subjectsubpopulationen_US
dc.titleA multiobjective hybrid genetic algorithm for the capacitated multipoint network design problemen_US
dc.typeArticleen_US
dc.identifier.doi10.1109/3477.846234en_US
dc.identifier.journalIEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICSen_US
dc.citation.volume30en_US
dc.citation.issue3en_US
dc.citation.spage461en_US
dc.citation.epage470en_US
dc.contributor.department資訊管理與財務金融系 註:原資管所+財金所zh_TW
dc.contributor.departmentDepartment of Information Management and Financeen_US
dc.identifier.wosnumberWOS:000087662600007-
dc.citation.woscount25-
Appears in Collections:Articles


Files in This Item:

  1. 000087662600007.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.