Full metadata record
DC FieldValueLanguage
dc.contributor.authorFerng, WRen_US
dc.contributor.authorKelley, CTen_US
dc.date.accessioned2014-12-08T15:45:16Z-
dc.date.available2014-12-08T15:45:16Z-
dc.date.issued2000-05-21en_US
dc.identifier.issn1064-8275en_US
dc.identifier.urihttp://hdl.handle.net/11536/30512-
dc.description.abstractIn this paper we consider a matrix-free path following algorithm for nonlinear parameter-dependent compact fixed point problems. We show that if these problems are discretized so that certain collective compactness and strong convergence properties hold, then this algorithm can follow smooth folds and capture simple bifurcations in a mesh-independent way.en_US
dc.language.isoen_USen_US
dc.subjectpath followingen_US
dc.subjectbifurcationen_US
dc.subjectcollective compactnessen_US
dc.subjectfold pointen_US
dc.subjectmesh independenceen_US
dc.subjectmatrix-free methoden_US
dc.subjectGMRESen_US
dc.subjectArnoldi methoden_US
dc.subjectsingularityen_US
dc.titleMesh independence of matrix-free methods for path followingen_US
dc.typeArticle; Proceedings Paperen_US
dc.identifier.journalSIAM JOURNAL ON SCIENTIFIC COMPUTINGen_US
dc.citation.volume21en_US
dc.citation.issue5en_US
dc.citation.spage1835en_US
dc.citation.epage1850en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000087320700013-
Appears in Collections:Conferences Paper


Files in This Item:

  1. 000087320700013.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.