Full metadata record
DC FieldValueLanguage
dc.contributor.authorHong, WTen_US
dc.contributor.authorChen, SHen_US
dc.date.accessioned2014-12-08T15:45:27Z-
dc.date.available2014-12-08T15:45:27Z-
dc.date.issued2000-04-01en_US
dc.identifier.issn0167-6393en_US
dc.identifier.urihttp://dx.doi.org/10.1016/S0167-6393(99)00057-6en_US
dc.identifier.urihttp://hdl.handle.net/11536/30613-
dc.description.abstractIn this paper, anew robust training algorithm is proposed for the generation of a set of bias-removed, noise-suppressed reference speech HMM models in adverse environment suffering from both channel bias and additive noise. Its main idea is to incorporate a signal bias-compensation operation and a PMC noise-compensation operation into its iterative training process. This makes the resulting speech HMM models more suitable to the given robust speech recognition method using the same signal bias-compensation and PMC noise-compensation operations in the recognition process. Experimental results showed that the speech HMM models it generated outperformed both the clean-speech HMM models and those generated by the conventional k-means algorithm for two adverse Mandarin speech recognition tasks. So it is a promising robust training algorithm. (C) 2000 Elsevier Science B.V. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectrobust training algorithmen_US
dc.subjectPMC noise-compensationen_US
dc.subjectsignal bias-compensationen_US
dc.subjectMandarin speech recognitionen_US
dc.titleA robust training algorithm for adverse speech recognitionen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/S0167-6393(99)00057-6en_US
dc.identifier.journalSPEECH COMMUNICATIONen_US
dc.citation.volume30en_US
dc.citation.issue4en_US
dc.citation.spage273en_US
dc.citation.epage293en_US
dc.contributor.department電信工程研究所zh_TW
dc.contributor.departmentInstitute of Communications Engineeringen_US
dc.identifier.wosnumberWOS:000085733500006-
dc.citation.woscount4-
Appears in Collections:Articles


Files in This Item:

  1. 000085733500006.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.