完整後設資料紀錄
DC 欄位語言
dc.contributor.authorChang, GJen_US
dc.contributor.authorZhu, XDen_US
dc.date.accessioned2014-12-08T15:45:32Z-
dc.date.available2014-12-08T15:45:32Z-
dc.date.issued2000-03-30en_US
dc.identifier.issn0166-218Xen_US
dc.identifier.urihttp://hdl.handle.net/11536/30641-
dc.description.abstractGiven a graph G and a positive integer k, denote by G[k] the graph obtained from G by replacing each vertex of G with an independent set of size k. A graph G is called pseudo-k Hamiltonian-connected if G[k] is Hamiltonian-connected, i.e., every two distinct vertices of G[k] are connected by a Hamiltonian path. A graph G is called pseudo Hamiltonian-connected if it is pseudo-k Hamiltonian-connected for some positive integer k. This paper proves that a graph G is pseudo-Hamiltonian-connected if and only if for every non-empty proper subset X of V(G), N(X) > X. The proof of the characterization also provides a polynomial-time algorithm that decides whether or not a given graph is pseudo-Hamiltonian-connected. The characterization of pseudo-Hamiltonian-connected graphs also answers a question of Richard Nowakowski, which motivated this paper. (C) 2000 Elsevier Science B.V. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectpseudo-Hamiltonian-connecteden_US
dc.subjectregular Hamiltonian walken_US
dc.subjectpseudo-edgeen_US
dc.subjectvertex packingen_US
dc.subjectregularizableen_US
dc.titlePseudo-Hamiltonian-connected graphsen_US
dc.typeArticleen_US
dc.identifier.journalDISCRETE APPLIED MATHEMATICSen_US
dc.citation.volume100en_US
dc.citation.issue3en_US
dc.citation.spage145en_US
dc.citation.epage153en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000085127900001-
dc.citation.woscount22-
顯示於類別:期刊論文


文件中的檔案:

  1. 000085127900001.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。