Full metadata record
DC FieldValueLanguage
dc.contributor.authorJuang, Jen_US
dc.contributor.authorLin, SSen_US
dc.date.accessioned2014-12-08T15:45:33Z-
dc.date.available2014-12-08T15:45:33Z-
dc.date.issued2000-03-21en_US
dc.identifier.issn0036-1399en_US
dc.identifier.urihttp://hdl.handle.net/11536/30645-
dc.description.abstractWe consider a cellular neural network (CNN) with a bias term z in the integer lattice Z(2) on the plane R-2. We impose a symmetric coupling between nearest neighbors, and also between next-nearest neighbors. Two parameters, a and epsilon, are used to describe the weights between such interacting cells. We study patterns that can exist as stable equilibria. In particular, the relationship between mosaic patterns and the parameter space (z, a; epsilon) can be completely characterized. This, in turn, addresses the so-called learning problem in CNNs. The complexities of mosaic patterns are also addressed.en_US
dc.language.isoen_USen_US
dc.subjectcellular neural networksen_US
dc.subjectpattern formationen_US
dc.subjectspatial chaosen_US
dc.titleCellular neural networks: Mosaic pattern and spatial chaosen_US
dc.typeArticleen_US
dc.identifier.journalSIAM JOURNAL ON APPLIED MATHEMATICSen_US
dc.citation.volume60en_US
dc.citation.issue3en_US
dc.citation.spage891en_US
dc.citation.epage915en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000086058700007-
dc.citation.woscount55-
Appears in Collections:Articles


Files in This Item:

  1. 000086058700007.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.