Full metadata record
DC FieldValueLanguage
dc.contributor.authorLin, TYen_US
dc.contributor.authorTseng, CHen_US
dc.date.accessioned2014-12-08T15:45:44Z-
dc.date.available2014-12-08T15:45:44Z-
dc.date.issued2000-02-01en_US
dc.identifier.issn0952-1976en_US
dc.identifier.urihttp://dx.doi.org/10.1016/S0952-1976(99)00045-7en_US
dc.identifier.urihttp://hdl.handle.net/11536/30769-
dc.description.abstractThe integration of neural networks and optimization provides a tool for designing network parameters and improving network performance. In this paper, the Taguchi method and the Design of Experiment (DOE) methodology are used to optimize network parameters. The users have to recognize the application problems and choose a suitable Artificial Neural Network model. Optimization problems can then be defined according to the model. The Taguchi method is first applied to a problem to find out the more important factors, then the DOE methodology is used for further analysis and forecasting. A Learning Vector Quantization example is shown for an application to bicycle derailleur systems. (C) 2000 Elsevier Science Ltd. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectneural networksen_US
dc.subjectoptimizationen_US
dc.subjectTaguchi methoden_US
dc.subjectdesign of experimentsen_US
dc.subjectbicycle derailleur systemsen_US
dc.titleOptimum design for artificial neural networks: an example in a bicycle derailleur systemen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/S0952-1976(99)00045-7en_US
dc.identifier.journalENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCEen_US
dc.citation.volume13en_US
dc.citation.issue1en_US
dc.citation.spage3en_US
dc.citation.epage14en_US
dc.contributor.department機械工程學系zh_TW
dc.contributor.departmentDepartment of Mechanical Engineeringen_US
dc.identifier.wosnumberWOS:000084882300002-
dc.citation.woscount33-
Appears in Collections:Articles


Files in This Item:

  1. 000084882300002.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.