Full metadata record
DC FieldValueLanguage
dc.contributor.authorLee, JGen_US
dc.contributor.authorChung, CGen_US
dc.date.accessioned2014-12-08T15:45:47Z-
dc.date.available2014-12-08T15:45:47Z-
dc.date.issued2000-01-15en_US
dc.identifier.issn0950-5849en_US
dc.identifier.urihttp://dx.doi.org/10.1016/S0950-5849(99)00052-Xen_US
dc.identifier.urihttp://hdl.handle.net/11536/30803-
dc.description.abstractThe optimal representative set selection problem is defined thus: given a set of test requirements and a test suite that satisfies all test requirements, find a subset of the test suite containing a minimum number of test cases that still satisfies all test requirements. Existing methods for solving the representative set selection problem do not guarantee that obtained representative sets are optimal (i.e, minimal). The enhanced zero-one optimal path set selection method [C.G. Chung, J.G. Lee, An enhanced zero-one optimal path set selection method, Journal of Systems and Software, 39(2) (1997) 145-164] solves the so-caned optimal path set selection problem, and can be adapted to solve the optimal representative set selection problem by considering paths as test cases and components to be covered (e.g. branches) as test requirements. (C) 2000 Elsevier Science B.V. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjecttestingen_US
dc.subjectoptimal representative seten_US
dc.subjecttest suite reductionen_US
dc.titleAn optimal representative set selection methoden_US
dc.typeArticleen_US
dc.identifier.doi10.1016/S0950-5849(99)00052-Xen_US
dc.identifier.journalINFORMATION AND SOFTWARE TECHNOLOGYen_US
dc.citation.volume42en_US
dc.citation.issue1en_US
dc.citation.spage17en_US
dc.citation.epage25en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000084754600002-
dc.citation.woscount10-
Appears in Collections:Articles


Files in This Item:

  1. 000084754600002.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.