Full metadata record
DC FieldValueLanguage
dc.contributor.authorBai, MSRen_US
dc.contributor.authorHsiao, Ien_US
dc.contributor.authorTsai, HMen_US
dc.contributor.authorLin, CTen_US
dc.date.accessioned2014-12-08T15:45:54Z-
dc.date.available2014-12-08T15:45:54Z-
dc.date.issued2000-01-01en_US
dc.identifier.issn0001-4966en_US
dc.identifier.urihttp://dx.doi.org/10.1121/1.428306en_US
dc.identifier.urihttp://hdl.handle.net/11536/30864-
dc.description.abstractAn on-line fault detection and isolation technique is proposed for the diagnosis of rotating machinery. The architecture of the system consists of a feature generation module and a fault inference module. Lateral vibration data are used for calculating the system features. Both continuous-time and discrete-time parameter estimation algorithms are employed for generating the features. A neural fuzzy network is exploited for intelligent inference of faults based on the extracted features. The proposed method is implemented on a digital signal processor. Experiments carried out for a rotor kit and a centrifugal fan indicate the potential of the proposed techniques in predictive maintenance. (C) 2000 Acoustical Society of America. [S0001-4966(00)03201-X].en_US
dc.language.isoen_USen_US
dc.titleDevelopment of an on-line diagnosis system for rotor vibration via model-based intelligent inferenceen_US
dc.typeArticleen_US
dc.identifier.doi10.1121/1.428306en_US
dc.identifier.journalJOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICAen_US
dc.citation.volume107en_US
dc.citation.issue1en_US
dc.citation.spage315en_US
dc.citation.epage323en_US
dc.contributor.department機械工程學系zh_TW
dc.contributor.departmentDepartment of Mechanical Engineeringen_US
dc.identifier.wosnumberWOS:000085225900026-
dc.citation.woscount3-
Appears in Collections:Articles


Files in This Item:

  1. 000085225900026.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.