完整後設資料紀錄
DC 欄位語言
dc.contributor.authorBai, MSRen_US
dc.contributor.authorHsiao, Ien_US
dc.contributor.authorTsai, HMen_US
dc.contributor.authorLin, CTen_US
dc.date.accessioned2014-12-08T15:45:54Z-
dc.date.available2014-12-08T15:45:54Z-
dc.date.issued2000-01-01en_US
dc.identifier.issn0001-4966en_US
dc.identifier.urihttp://dx.doi.org/10.1121/1.428306en_US
dc.identifier.urihttp://hdl.handle.net/11536/30864-
dc.description.abstractAn on-line fault detection and isolation technique is proposed for the diagnosis of rotating machinery. The architecture of the system consists of a feature generation module and a fault inference module. Lateral vibration data are used for calculating the system features. Both continuous-time and discrete-time parameter estimation algorithms are employed for generating the features. A neural fuzzy network is exploited for intelligent inference of faults based on the extracted features. The proposed method is implemented on a digital signal processor. Experiments carried out for a rotor kit and a centrifugal fan indicate the potential of the proposed techniques in predictive maintenance. (C) 2000 Acoustical Society of America. [S0001-4966(00)03201-X].en_US
dc.language.isoen_USen_US
dc.titleDevelopment of an on-line diagnosis system for rotor vibration via model-based intelligent inferenceen_US
dc.typeArticleen_US
dc.identifier.doi10.1121/1.428306en_US
dc.identifier.journalJOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICAen_US
dc.citation.volume107en_US
dc.citation.issue1en_US
dc.citation.spage315en_US
dc.citation.epage323en_US
dc.contributor.department機械工程學系zh_TW
dc.contributor.departmentDepartment of Mechanical Engineeringen_US
dc.identifier.wosnumberWOS:000085225900026-
dc.citation.woscount3-
顯示於類別:期刊論文


文件中的檔案:

  1. 000085225900026.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。