完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | Bai, MSR | en_US |
dc.contributor.author | Hsiao, I | en_US |
dc.contributor.author | Tsai, HM | en_US |
dc.contributor.author | Lin, CT | en_US |
dc.date.accessioned | 2014-12-08T15:45:54Z | - |
dc.date.available | 2014-12-08T15:45:54Z | - |
dc.date.issued | 2000-01-01 | en_US |
dc.identifier.issn | 0001-4966 | en_US |
dc.identifier.uri | http://dx.doi.org/10.1121/1.428306 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/30864 | - |
dc.description.abstract | An on-line fault detection and isolation technique is proposed for the diagnosis of rotating machinery. The architecture of the system consists of a feature generation module and a fault inference module. Lateral vibration data are used for calculating the system features. Both continuous-time and discrete-time parameter estimation algorithms are employed for generating the features. A neural fuzzy network is exploited for intelligent inference of faults based on the extracted features. The proposed method is implemented on a digital signal processor. Experiments carried out for a rotor kit and a centrifugal fan indicate the potential of the proposed techniques in predictive maintenance. (C) 2000 Acoustical Society of America. [S0001-4966(00)03201-X]. | en_US |
dc.language.iso | en_US | en_US |
dc.title | Development of an on-line diagnosis system for rotor vibration via model-based intelligent inference | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1121/1.428306 | en_US |
dc.identifier.journal | JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA | en_US |
dc.citation.volume | 107 | en_US |
dc.citation.issue | 1 | en_US |
dc.citation.spage | 315 | en_US |
dc.citation.epage | 323 | en_US |
dc.contributor.department | 機械工程學系 | zh_TW |
dc.contributor.department | Department of Mechanical Engineering | en_US |
dc.identifier.wosnumber | WOS:000085225900026 | - |
dc.citation.woscount | 3 | - |
顯示於類別: | 期刊論文 |