Full metadata record
DC FieldValueLanguage
dc.contributor.authorLiaw, SCen_US
dc.contributor.authorKuo, Den_US
dc.contributor.authorChang, GJen_US
dc.date.accessioned2014-12-08T15:45:54Z-
dc.date.available2014-12-08T15:45:54Z-
dc.date.issued2000-01-01en_US
dc.identifier.issn0381-7032en_US
dc.identifier.urihttp://hdl.handle.net/11536/30868-
dc.description.abstractThe sum graph of a set S of positive integers is the graph G(+)(S) having S as its vertex set, with two distinct vertices adjacent whenever their sum is in S. If S is allowed to be a subset of all integers, a graph so obtained is called an integral sum graph. The integral sum number of a given graph G is the smallest number of isolated vertices which when added to G result in an integral sum graph. In this paper, we find the integral sum numbers of caterpillars, cycles, wheels, and complete bipartite graphs.en_US
dc.language.isoen_USen_US
dc.titleIntegral sum numbers of graphsen_US
dc.typeArticleen_US
dc.identifier.journalARS COMBINATORIAen_US
dc.citation.volume54en_US
dc.citation.issueen_US
dc.citation.spage259en_US
dc.citation.epage268en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000085703600019-
dc.citation.woscount12-
Appears in Collections:Articles