完整後設資料紀錄
DC 欄位語言
dc.contributor.authorHsu, HMen_US
dc.contributor.authorLin, YJen_US
dc.date.accessioned2014-12-08T15:45:57Z-
dc.date.available2014-12-08T15:45:57Z-
dc.date.issued1999-12-01en_US
dc.identifier.issn1072-4761en_US
dc.identifier.urihttp://hdl.handle.net/11536/30911-
dc.description.abstractIn general, a successful application of fuzzy logic control depends on fuzzy rules, the structure of the rules, and membership functions. This research presents a fuzzy logic control (FLC) model for aggregation production planning by using a genetic algorithm (GA) to simultaneously search the membership functions and inference rule set. It is shown that the genetic algorithm enables us to generate an optimal combination of the membership functions and the rule set. The approach presented in this research is illustrated by using Holt's paint factory data. The comparison of our results with those of Rink and Turksen shows that the proposed approach is the more favorable one. Significance: This research presents a fuzzy logic control (FLC) model for aggregation production planning by using a genetic algorithm (GA) to simultaneously search the membership functions and inference rule set.en_US
dc.language.isoen_USen_US
dc.subjectfuzzy logic control (FLC)en_US
dc.subjectgenetic algorithm (GA)en_US
dc.subjectaggregation production planningen_US
dc.subjectand membership functionen_US
dc.titleFuzzy logic control of aggregate production planning using genetic algorithmsen_US
dc.typeArticleen_US
dc.identifier.journalINTERNATIONAL JOURNAL OF INDUSTRIAL ENGINEERING-THEORY APPLICATIONS AND PRACTICEen_US
dc.citation.volume6en_US
dc.citation.issue4en_US
dc.citation.spage325en_US
dc.citation.epage333en_US
dc.contributor.department工業工程與管理學系zh_TW
dc.contributor.departmentDepartment of Industrial Engineering and Managementen_US
dc.identifier.wosnumberWOS:000082924400008-
dc.citation.woscount4-
顯示於類別:期刊論文