Full metadata record
DC FieldValueLanguage
dc.contributor.authorSheu, YCen_US
dc.date.accessioned2014-12-08T15:46:02Z-
dc.date.available2014-12-08T15:46:02Z-
dc.date.issued1999-12-01en_US
dc.identifier.issn0002-9939en_US
dc.identifier.urihttp://hdl.handle.net/11536/30949-
dc.description.abstractConsider an (L, alpha)-superdiffusion X on R-d, where L is an uniformly elliptic differential operator in R-d, and 1 < alpha less than or equal to 2. The G-polar sets for X are subsets of R x R-d which have no intersection with the graph G of X, and they are related to the removable singularities for a corresponding nonlinear parabolic partial differential equation. Dynkin characterized the G-polarity of a general analytic set A subset of R x R-d in term of the Bessel capacity of A, and Sheu in term of the restricted Hausdorff dimension. In this paper we study in particular the G-polarity of sets of the form E x F, where E and F are two Borel subsets of R and R-d respectively. We establish a relationship between the restricted Hausdorff dimension of E x F and the usual Hausdorff dimensions of E and F. As an application, we obtain a criterion for G-polarity of E x F in terms of the Hausdorff dimensions of E and F, which also gives an answer to a problem proposed by Dynkin in the 1991 Wald Memorial Lectures.en_US
dc.language.isoen_USen_US
dc.subjectsuperdiffusionen_US
dc.subjectgraph of superdiffusionen_US
dc.subjectsemilinear partial differential equationen_US
dc.subjectG-polarityen_US
dc.subjectH-polarityen_US
dc.subjectHausdorff dimensionen_US
dc.subjectbox dimensionen_US
dc.subjectrestricted Hausdorff dimensionen_US
dc.titleOn a problem of Dynkinen_US
dc.typeArticleen_US
dc.identifier.journalPROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETYen_US
dc.citation.volume127en_US
dc.citation.issue12en_US
dc.citation.spage3721en_US
dc.citation.epage3728en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000083366900037-
dc.citation.woscount0-
Appears in Collections:Articles


Files in This Item:

  1. 000083366900037.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.