完整後設資料紀錄
DC 欄位語言
dc.contributor.authorHwang, FKen_US
dc.contributor.authorOnn, Sen_US
dc.contributor.authorRothblum, UGen_US
dc.date.accessioned2014-12-08T15:46:02Z-
dc.date.available2014-12-08T15:46:02Z-
dc.date.issued1999-11-29en_US
dc.identifier.issn1052-6234en_US
dc.identifier.urihttp://hdl.handle.net/11536/30956-
dc.description.abstractWe consider the class of shaped partition problems of partitioning n given vectors in d-dimensional criteria space into p parts so as to maximize an arbitrary objective function which is convex on the sum of vectors in each part, subject to arbitrary constraints on the number of elements in each part. This class has broad expressive power and captures NP-hard problems even if either d or p is fixed. In contrast, we show that when both d and p are fixed, the problem can be solved in strongly polynomial time. Our solution method relies on studying the corresponding class of shaped partition polytopes. Such polytopes may have exponentially many vertices and facets even when one of d or p is fixed; however, we show that when both d and p are fixed, the number of vertices of any shaped partition polytope is O(n(d(p2))) and all vertices can be produced in strongly polynomial time.en_US
dc.language.isoen_USen_US
dc.subjectpartitionen_US
dc.subjectclusteren_US
dc.subjectoptimizationen_US
dc.subjectconvexen_US
dc.subjectpolytopeen_US
dc.subjectenumerationen_US
dc.subjectpolynomial timeen_US
dc.subjectseparationen_US
dc.subjectprogrammingen_US
dc.titleA polynomial time algorithm for shaped partition problemsen_US
dc.typeArticleen_US
dc.identifier.journalSIAM JOURNAL ON OPTIMIZATIONen_US
dc.citation.volume10en_US
dc.citation.issue1en_US
dc.citation.spage70en_US
dc.citation.epage81en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000084703500005-
dc.citation.woscount27-
顯示於類別:期刊論文


文件中的檔案:

  1. 000084703500005.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。