Full metadata record
DC FieldValueLanguage
dc.contributor.authorTsai, CHen_US
dc.contributor.authorHung, CNen_US
dc.contributor.authorHsu, LHen_US
dc.contributor.authorChang, CHen_US
dc.date.accessioned2014-12-08T15:46:02Z-
dc.date.available2014-12-08T15:46:02Z-
dc.date.issued1999-11-26en_US
dc.identifier.issn0020-0190en_US
dc.identifier.urihttp://dx.doi.org/10.1016/S0020-0190(99)00123-4en_US
dc.identifier.urihttp://hdl.handle.net/11536/30958-
dc.description.abstractLet n be a positive integer with n greater than or equal to 2. The trivalent Cayley interconnection network, denoted by TCIN(n), is proposed by Vadapalli and Srimani (1995). Later, Vadapalli and Srimani (1996) claimed that the diameter of TCIN(n) is 2n - 1. In this paper, we argue that the above claim is not correct. Instead, we show that the diameter of TCIN(n) is 2n - 1 only for n = 2 and 2n - 2 for all other cases. (C) 1999 Elsevier Science B.V. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjecttrivalent Cayley graphen_US
dc.subjectinterconnection networksen_US
dc.subjectdiameteren_US
dc.titleThe correct diameter of trivalent Cayley graphsen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/S0020-0190(99)00123-4en_US
dc.identifier.journalINFORMATION PROCESSING LETTERSen_US
dc.citation.volume72en_US
dc.citation.issue3-4en_US
dc.citation.spage109en_US
dc.citation.epage111en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000084628800006-
dc.citation.woscount5-
Appears in Collections:Articles


Files in This Item:

  1. 000084628800006.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.