Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Tsai, CH | en_US |
dc.contributor.author | Hung, CN | en_US |
dc.contributor.author | Hsu, LH | en_US |
dc.contributor.author | Chang, CH | en_US |
dc.date.accessioned | 2014-12-08T15:46:02Z | - |
dc.date.available | 2014-12-08T15:46:02Z | - |
dc.date.issued | 1999-11-26 | en_US |
dc.identifier.issn | 0020-0190 | en_US |
dc.identifier.uri | http://dx.doi.org/10.1016/S0020-0190(99)00123-4 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/30958 | - |
dc.description.abstract | Let n be a positive integer with n greater than or equal to 2. The trivalent Cayley interconnection network, denoted by TCIN(n), is proposed by Vadapalli and Srimani (1995). Later, Vadapalli and Srimani (1996) claimed that the diameter of TCIN(n) is 2n - 1. In this paper, we argue that the above claim is not correct. Instead, we show that the diameter of TCIN(n) is 2n - 1 only for n = 2 and 2n - 2 for all other cases. (C) 1999 Elsevier Science B.V. All rights reserved. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | trivalent Cayley graph | en_US |
dc.subject | interconnection networks | en_US |
dc.subject | diameter | en_US |
dc.title | The correct diameter of trivalent Cayley graphs | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1016/S0020-0190(99)00123-4 | en_US |
dc.identifier.journal | INFORMATION PROCESSING LETTERS | en_US |
dc.citation.volume | 72 | en_US |
dc.citation.issue | 3-4 | en_US |
dc.citation.spage | 109 | en_US |
dc.citation.epage | 111 | en_US |
dc.contributor.department | 資訊工程學系 | zh_TW |
dc.contributor.department | Department of Computer Science | en_US |
dc.identifier.wosnumber | WOS:000084628800006 | - |
dc.citation.woscount | 5 | - |
Appears in Collections: | Articles |
Files in This Item:
If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.