Full metadata record
DC FieldValueLanguage
dc.contributor.authorChen, PNen_US
dc.contributor.authorAlajaji, Fen_US
dc.date.accessioned2014-12-08T15:46:04Z-
dc.date.available2014-12-08T15:46:04Z-
dc.date.issued1999-11-01en_US
dc.identifier.issn0018-9448en_US
dc.identifier.urihttp://dx.doi.org/10.1109/18.796417en_US
dc.identifier.urihttp://hdl.handle.net/11536/30985-
dc.description.abstractThe conventional definitions of the source coding rate and or channel capacity require the existence of reliable codes for all sufficiently large block lengths. Alternatively, if it is required that good codes exist for infinitely many block lengths, then optimistic definitions of source coding rate and channel capacity are obtained. In this work, formulas for the optimistic minimum achievable fixed-length source coding rate and the minimum epsilon-achievable source coding rate for arbitrary finite-alphabet sources are established, The expressions for the optimistic capacity and the optimistic epsilon-capacity of arbitrary single-user channels are also provided. The expressions of the optimistic source coding rate and capacity are examined for the class of information stable sources and channels, respectively, Finally, examples for the computation of optimistic capacity are presented.en_US
dc.language.isoen_USen_US
dc.subjecterror probabilityen_US
dc.subjectoptimistic channel capacityen_US
dc.subjectoptimistic source coding rateen_US
dc.subjectShannon theoryen_US
dc.subjectsource-channel separation theoremen_US
dc.titleOptimistic Shannon coding theorems for arbitrary single-user systemsen_US
dc.typeArticle; Proceedings Paperen_US
dc.identifier.doi10.1109/18.796417en_US
dc.identifier.journalIEEE TRANSACTIONS ON INFORMATION THEORYen_US
dc.citation.volume45en_US
dc.citation.issue7en_US
dc.citation.spage2623en_US
dc.citation.epage2629en_US
dc.contributor.department電信工程研究所zh_TW
dc.contributor.departmentInstitute of Communications Engineeringen_US
dc.identifier.wosnumberWOS:000083159300053-
Appears in Collections:Conferences Paper


Files in This Item:

  1. 000083159300053.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.