Full metadata record
DC FieldValueLanguage
dc.contributor.authorYang, SKen_US
dc.contributor.authorLiu, TSen_US
dc.date.accessioned2014-12-08T15:46:10Z-
dc.date.available2014-12-08T15:46:10Z-
dc.date.issued1999-10-01en_US
dc.identifier.issn0951-8320en_US
dc.identifier.urihttp://dx.doi.org/10.1016/S0951-8320(99)00015-0en_US
dc.identifier.urihttp://hdl.handle.net/11536/31044-
dc.description.abstractFailure can be prevented in time by preventive maintenance (PM) so as to promote reliability only if failures can be early predicted. This article presents a failure prediction method for PM by state estimation using the Kalman filter on a DC motor. An exponential attenuator is placed at the output end of the motor model to simulate aging failures by monitoring one of the state variables, i.e. rotating speed of the motor. Failure times are generated by Monte Carlo simulation and predicted by the Kalman filter. One-step-ahead and two-step-ahead predictions are conducted. Resultant prediction errors are sufficiently small in both predictions. (C) 1999 Elsevier Science Ltd. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectKalman filteren_US
dc.subjectfailure predictionen_US
dc.subjectpreventive maintenanceen_US
dc.subjectDC motoren_US
dc.titleState estimation for predictive maintenance using Kalman filteren_US
dc.typeArticleen_US
dc.identifier.doi10.1016/S0951-8320(99)00015-0en_US
dc.identifier.journalRELIABILITY ENGINEERING & SYSTEM SAFETYen_US
dc.citation.volume66en_US
dc.citation.issue1en_US
dc.citation.spage29en_US
dc.citation.epage39en_US
dc.contributor.department機械工程學系zh_TW
dc.contributor.departmentDepartment of Mechanical Engineeringen_US
dc.identifier.wosnumberWOS:000082562000003-
dc.citation.woscount32-
Appears in Collections:Articles


Files in This Item:

  1. 000082562000003.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.