完整後設資料紀錄
DC 欄位語言
dc.contributor.authorHuang, LLen_US
dc.contributor.authorChang, GJen_US
dc.date.accessioned2014-12-08T15:46:14Z-
dc.date.available2014-12-08T15:46:14Z-
dc.date.issued1999-09-01en_US
dc.identifier.issn0364-9024en_US
dc.identifier.urihttp://hdl.handle.net/11536/31105-
dc.description.abstractIn a search for triangle-free graphs with arbitrarily large chromatic numbers, Mycielski developed a graph transformation that transforms a graph G into a new graph mu(G), we now call the Mycielskian of G, which has the same clique number as G and whose chromatic number equals chi(G) + 1. Chang, Huang, and Zhu [G. J. Chang, L. Huang, & X. Zhu, Discrete Math, to appear] have investigated circular chromatic numbers of Mycielskians for several classes of graphs. In this article, we study circular chromatic numbers of Mycielskians for another class of graphs G(k)(d). The main result is that chi(c)(mu(G(k)(d))) = chi(mu(G(k)(d))), which settles a problem raised in [G. J. Chang, L. Huang, & X. Zhu, Discrete Math, to appear, and X. Zhu, to appear]. As chi(c)(G(k)(d)) = k/d and chi(G(k)(d)) = [k/d], consequently, there exist graphs G such that chi(c)(G) is as close to chi(G) - 1 as you want, but chi(c)(mu(G)) = chi(mu(G)). (C) 1999 John Wiley & Sons, Inc.en_US
dc.language.isoen_USen_US
dc.subjectchromatic numberen_US
dc.subjectcircular chromatic numberen_US
dc.subjectcoloren_US
dc.subjectMycielskianen_US
dc.subjecttriangleen_US
dc.subjectclique numberen_US
dc.titleThe circular chromatic number of the Mycielskian of G(k)(d)en_US
dc.typeArticleen_US
dc.identifier.journalJOURNAL OF GRAPH THEORYen_US
dc.citation.volume32en_US
dc.citation.issue1en_US
dc.citation.spage63en_US
dc.citation.epage71en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000081962300006-
dc.citation.woscount9-
顯示於類別:期刊論文


文件中的檔案:

  1. 000081962300006.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。