Full metadata record
DC FieldValueLanguage
dc.contributor.authorHung, CAen_US
dc.contributor.authorLin, SFen_US
dc.date.accessioned2014-12-08T15:46:15Z-
dc.date.available2014-12-08T15:46:15Z-
dc.date.issued1999-09-01en_US
dc.identifier.issn0218-0014en_US
dc.identifier.urihttp://hdl.handle.net/11536/31117-
dc.description.abstractA neural network architecture that incorporates a supervised mechanism into a fuzzy adaptive Hamming net (FAHN) is presented. The FAHN constructs hyper-rectangles that represent template weights in an unsupervised learning paradigm. Learning in the FAHN consists of creating and adjusting hyper-rectangles in feature space. By aggregating multiple hyper-rectangles into a single class, we can build a classifier, to be henceforth termed as a supervised fuzzy adaptive Hamming net (SFAHN), that discriminates between nonconvex and even discontinuous classes. The SFAHN can operate at a fast-learning rate in online (incremental) or offline (batch) applications, without becoming unstable. The performance of the SFAHN is tested on the Fisher iris data and on an online character recognition problem.en_US
dc.language.isoen_USen_US
dc.subjectneural networken_US
dc.subjectfuzzy adaptive Hamming neten_US
dc.subjectsupervised fuzzy adaptive Hamming neten_US
dc.subjectcharacter recognitionen_US
dc.titleAn incremental learning neural network for pattern classificationen_US
dc.typeLetteren_US
dc.identifier.journalINTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCEen_US
dc.citation.volume13en_US
dc.citation.issue6en_US
dc.citation.spage913en_US
dc.citation.epage928en_US
dc.contributor.department電控工程研究所zh_TW
dc.contributor.departmentInstitute of Electrical and Control Engineeringen_US
dc.identifier.wosnumberWOS:000083044100006-
dc.citation.woscount3-
Appears in Collections:Articles