Full metadata record
DC FieldValueLanguage
dc.contributor.authorLIN, SSen_US
dc.date.accessioned2014-12-08T15:04:37Z-
dc.date.available2014-12-08T15:04:37Z-
dc.date.issued1993-03-01en_US
dc.identifier.issn0002-9939en_US
dc.identifier.urihttp://dx.doi.org/10.2307/2159147en_US
dc.identifier.urihttp://hdl.handle.net/11536/3111-
dc.description.abstractWe study the existence and multiplicity of asymmetric positive solutions of a semilinear elliptic equation on finite cylinders with mixed type boundary conditions. By using a Nehari-type variational method, we prove that the numbers of asymmetric positive solutions are increasing without bound when the lengths of cylinders are increasing. On the contrary, by using the blow up technique, we obtain an a priori bound for positive solutions and then prove that all positive solutions must be symmetric when the cylinders are short enough.en_US
dc.language.isoen_USen_US
dc.subjectSYMMETRY BREAKINGen_US
dc.subjectCYLINDERSen_US
dc.titleSYMMETRY-BREAKINGS FOR SEMILINEAR ELLIPTIC-EQUATIONS OF FINITE CYLINDRICAL DOMAINSen_US
dc.typeArticleen_US
dc.identifier.doi10.2307/2159147en_US
dc.identifier.journalPROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETYen_US
dc.citation.volume117en_US
dc.citation.issue3en_US
dc.citation.spage803en_US
dc.citation.epage811en_US
dc.contributor.department交大名義發表zh_TW
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentNational Chiao Tung Universityen_US
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:A1993KM07300034-
dc.citation.woscount1-
Appears in Collections:Articles


Files in This Item:

  1. A1993KM07300034.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.