Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Lee, YS | en_US |
dc.contributor.author | Chang, GJ | en_US |
dc.date.accessioned | 2014-12-08T15:46:16Z | - |
dc.date.available | 2014-12-08T15:46:16Z | - |
dc.date.issued | 1999-09-01 | en_US |
dc.identifier.issn | 1027-5487 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/31135 | - |
dc.description.abstract | A Steinhaus matrix is a symmetric 0-1 matrix [a(i,j)](nxn) such that a(i,i) = 0 for 0 less than or equal to i less than or equal to n - 1 and a(i,j) = (a(i-1,j-1) + a(i-1,j)) (mod 2) for 1 less than or equal to i < j less than or equal to n-1. A Steinhaus graph is a graph whose adjacency matrix is a Steinhaus matrix. In this paper, we present a new characterization of bipartite Steinhaus graphs. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | Steinhaus graph | en_US |
dc.subject | Steinhaus triangle | en_US |
dc.subject | binary string | en_US |
dc.subject | adjacency matrix | en_US |
dc.title | Bipartite Steinhaus graphs | en_US |
dc.type | Article | en_US |
dc.identifier.journal | TAIWANESE JOURNAL OF MATHEMATICS | en_US |
dc.citation.volume | 3 | en_US |
dc.citation.issue | 3 | en_US |
dc.citation.spage | 303 | en_US |
dc.citation.epage | 310 | en_US |
dc.contributor.department | 應用數學系 | zh_TW |
dc.contributor.department | Department of Applied Mathematics | en_US |
dc.identifier.wosnumber | WOS:000083272100004 | - |
dc.citation.woscount | 4 | - |
Appears in Collections: | Articles |