Full metadata record
DC FieldValueLanguage
dc.contributor.authorChiou, JCen_US
dc.contributor.authorWu, SDen_US
dc.date.accessioned2014-12-08T15:46:18Z-
dc.date.available2014-12-08T15:46:18Z-
dc.date.issued1999-08-15en_US
dc.identifier.issn0377-0427en_US
dc.identifier.urihttp://hdl.handle.net/11536/31155-
dc.description.abstractIn this paper, a new explicit numerical integration method is proposed. The proposed method is based on the relationship that m-step Adams-Moulton method is the linear convex, combination of (m - 1)-step Adams-Moulton and m-step Adams-Bashforth methods with a fixed weighting coefficient. By examining the order of accuracy and stability regions, we conclude that the present method is superior to the traditional Adams-Bashforth-Moulton predictor-corrector method. A simple harmonic oscillator problem is used to demonstrate the efficiency of the proposed method. (C) 1999 Elsevier Science B.V. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectAdams-Moulton and Adams-Bashforth numerical integratoren_US
dc.subjectaccuracy and stability analysisen_US
dc.titleOn the generation of higher order numerical integration methods using lower order Adams-Bashforth and Adams-Moulton methodsen_US
dc.typeArticleen_US
dc.identifier.journalJOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICSen_US
dc.citation.volume108en_US
dc.citation.issue1-2en_US
dc.citation.spage19en_US
dc.citation.epage29en_US
dc.contributor.department電控工程研究所zh_TW
dc.contributor.departmentInstitute of Electrical and Control Engineeringen_US
dc.identifier.wosnumberWOS:000081945900002-
dc.citation.woscount1-
Appears in Collections:Articles


Files in This Item:

  1. 000081945900002.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.