Full metadata record
DC FieldValueLanguage
dc.contributor.authorCHANG, GJen_US
dc.contributor.authorFARBER, Men_US
dc.contributor.authorTUZA, Zen_US
dc.date.accessioned2014-12-08T15:04:38Z-
dc.date.available2014-12-08T15:04:38Z-
dc.date.issued1993-02-01en_US
dc.identifier.issn0895-4801en_US
dc.identifier.urihttp://dx.doi.org/10.1137/0406002en_US
dc.identifier.urihttp://hdl.handle.net/11536/3122-
dc.description.abstractIn a graph G = (V, E), E[v] denotes the set of edges in the subgraph induced by N[v] = {v} or {u is-an-element-of V: uv is-an-element-of E}. The neighborhood-covering problem is to find the minimum cardinality of a set C of vertices such that E = or {E[v]: v is-an-element-of C}. The neighborhood-independence problem is to find the maximum cardinality of a set of edges in which there are no two distinct edges belonging to the same E[v] for any v is-an-element-of V. Two other related problems are the clique-transversal problem and the clique-independence problem. It is shown that these four problems are NP-complete in split graphs with degree constraints and linear time algorithms for them are given in a strongly chordal graph when a strong elimination order is given.en_US
dc.language.isoen_USen_US
dc.subjectNEIGHBORHOOD-COVERINGen_US
dc.subjectNEIGHBORHOOD-INDEPENDENCEen_US
dc.subjectCLIQUE-TRANSVERSALen_US
dc.subjectCLIQUE-INDEPENDENCEen_US
dc.subjectCHORDAL GRAPHen_US
dc.subjectSTRONGLY CHORDAL GRAPHen_US
dc.subjectSPLIT GRAPHen_US
dc.subjectNP-COMPLETEen_US
dc.titleALGORITHMIC ASPECTS OF NEIGHBORHOOD NUMBERSen_US
dc.typeArticleen_US
dc.identifier.doi10.1137/0406002en_US
dc.identifier.journalSIAM JOURNAL ON DISCRETE MATHEMATICSen_US
dc.citation.volume6en_US
dc.citation.issue1en_US
dc.citation.spage24en_US
dc.citation.epage29en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:A1993KL99800002-
dc.citation.woscount30-
Appears in Collections:Articles


Files in This Item:

  1. A1993KL99800002.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.