Full metadata record
DC FieldValueLanguage
dc.contributor.authorTzeng, WGen_US
dc.date.accessioned2014-12-08T15:46:36Z-
dc.date.available2014-12-08T15:46:36Z-
dc.date.issued1999-05-14en_US
dc.identifier.issn0020-0190en_US
dc.identifier.urihttp://dx.doi.org/10.1016/S0020-0190(99)00055-1en_US
dc.identifier.urihttp://hdl.handle.net/11536/31339-
dc.description.abstractWe consider the linear recurrence relation V-t(x) = Sigma(i=1)(m) (a(i)x + b(i))Vt-i(x) + cx + f where m greater than or equal to 1, a(i) and b(i), 1 less than or equal to i less than or equal to m, are integers. The RSA and LUC schemes can be defined by this relation. In this paper we show that if the linear recurrence relation has some properties, the public-key scheme based on it cannot withstand the common modulus and chosen-message attacks, no matter what the order in is and what the parameters for a(i) and b(i), 1 less than or equal to i less than or equal to m, are. This implies that the LUC cryptosystem cannot withstand the common modulus attack and the LUC digital signature scheme cannot withstand the chosen-message attack. (C) 1999 Elsevier Science B.V. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectcryptanalysisen_US
dc.subjectchosen-message attacken_US
dc.subjectcommon modulus attacken_US
dc.subjectlinear recurrence relationen_US
dc.subjectcryptographyen_US
dc.titleCommon modulus and chosen-message attacks on public-key schemes with linear recurrence relationsen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/S0020-0190(99)00055-1en_US
dc.identifier.journalINFORMATION PROCESSING LETTERSen_US
dc.citation.volume70en_US
dc.citation.issue3en_US
dc.citation.spage153en_US
dc.citation.epage156en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000081322500007-
dc.citation.woscount1-
Appears in Collections:Articles


Files in This Item:

  1. 000081322500007.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.