Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Weng, CW | en_US |
dc.date.accessioned | 2014-12-08T15:46:37Z | - |
dc.date.available | 2014-12-08T15:46:37Z | - |
dc.date.issued | 1999-05-01 | en_US |
dc.identifier.issn | 0095-8956 | en_US |
dc.identifier.uri | http://dx.doi.org/10.1006/jctb.1998.1892 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/31348 | - |
dc.description.abstract | We prove the following theorem. Theorem. Let Gamma = (X, R) denote a distance-regular graph with classical parameters (d, b, alpha, beta) and d greater than or equal to 4. Suppose b < -1, and suppose the intersection numbers a(1) not equal 0, c(2) > 1. Then precisely one of the following (i) (iii) holds. (i) Gamma is the dual polar graph (2)A(dd-1)(-b). (ii) Gamma is the Hermitian forms graph Her(-b)(d). (iii) alpha = (b - 1)/2, beta = -(1 + b(d))/2, and -b is a power of an odd prime. (C) 1999 Academic Press. | en_US |
dc.language.iso | en_US | en_US |
dc.title | Classical distance-regular graphs of negative type | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1006/jctb.1998.1892 | en_US |
dc.identifier.journal | JOURNAL OF COMBINATORIAL THEORY SERIES B | en_US |
dc.citation.volume | 76 | en_US |
dc.citation.issue | 1 | en_US |
dc.citation.spage | 93 | en_US |
dc.citation.epage | 116 | en_US |
dc.contributor.department | 應用數學系 | zh_TW |
dc.contributor.department | Department of Applied Mathematics | en_US |
dc.identifier.wosnumber | WOS:000080242700005 | - |
dc.citation.woscount | 22 | - |
Appears in Collections: | Articles |
Files in This Item:
If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.