完整後設資料紀錄
DC 欄位語言
dc.contributor.authorWeng, CWen_US
dc.date.accessioned2014-12-08T15:46:37Z-
dc.date.available2014-12-08T15:46:37Z-
dc.date.issued1999-05-01en_US
dc.identifier.issn0095-8956en_US
dc.identifier.urihttp://dx.doi.org/10.1006/jctb.1998.1892en_US
dc.identifier.urihttp://hdl.handle.net/11536/31348-
dc.description.abstractWe prove the following theorem. Theorem. Let Gamma = (X, R) denote a distance-regular graph with classical parameters (d, b, alpha, beta) and d greater than or equal to 4. Suppose b < -1, and suppose the intersection numbers a(1) not equal 0, c(2) > 1. Then precisely one of the following (i) (iii) holds. (i) Gamma is the dual polar graph (2)A(dd-1)(-b). (ii) Gamma is the Hermitian forms graph Her(-b)(d). (iii) alpha = (b - 1)/2, beta = -(1 + b(d))/2, and -b is a power of an odd prime. (C) 1999 Academic Press.en_US
dc.language.isoen_USen_US
dc.titleClassical distance-regular graphs of negative typeen_US
dc.typeArticleen_US
dc.identifier.doi10.1006/jctb.1998.1892en_US
dc.identifier.journalJOURNAL OF COMBINATORIAL THEORY SERIES Ben_US
dc.citation.volume76en_US
dc.citation.issue1en_US
dc.citation.spage93en_US
dc.citation.epage116en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000080242700005-
dc.citation.woscount22-
顯示於類別:期刊論文


文件中的檔案:

  1. 000080242700005.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。