Full metadata record
DC FieldValueLanguage
dc.contributor.authorLiu, CSen_US
dc.contributor.authorTseng, CHen_US
dc.date.accessioned2014-12-08T15:46:45Z-
dc.date.available2014-12-08T15:46:45Z-
dc.date.issued1999-04-01en_US
dc.identifier.issn0898-1221en_US
dc.identifier.urihttp://dx.doi.org/10.1016/S0898-1221(99)00088-7en_US
dc.identifier.urihttp://hdl.handle.net/11536/31435-
dc.description.abstractThis paper introduces a set of new algorithms, called the Space-Decomposition Minimization (SDM) algorithms, that decomposes the minimization problem into subproblems. If the decomposed-space subproblems are not coupled to each other, they can be solved independently with any convergent algorithm; otherwise, iterative algorithms presented in this paper can be used. Furthermore, if the design space is further decomposed into one-dimensional decomposed spaces, the solution can be found directly using one-dimensional search methods. A hybrid algorithm that yields the benefits of the SDM algorithm and the conjugate gradient method is also given. An example that demonstrates application of SDM algorithm to the learning of a single-layer perceptron neural network is presented, and five large-scale numerical problems are used to test the SDM algorithms. The results obtained are compared with results from the conjugate gradient method. (C) 1999 Elsevier Science Ltd. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectunconstrained minimizationen_US
dc.subjectdecomposition methoden_US
dc.subjectdirect-search methoden_US
dc.subjectlarge-scale problemen_US
dc.titleSpace-decomposition minimization method for large-scale minimization problemsen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/S0898-1221(99)00088-7en_US
dc.identifier.journalCOMPUTERS & MATHEMATICS WITH APPLICATIONSen_US
dc.citation.volume37en_US
dc.citation.issue7en_US
dc.citation.spage73en_US
dc.citation.epage88en_US
dc.contributor.department機械工程學系zh_TW
dc.contributor.departmentDepartment of Mechanical Engineeringen_US
dc.identifier.wosnumberWOS:000079482100007-
dc.citation.woscount2-
Appears in Collections:Articles


Files in This Item:

  1. 000079482100007.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.