Full metadata record
DC FieldValueLanguage
dc.contributor.authorChang, GJen_US
dc.contributor.authorDasGupta, Ben_US
dc.contributor.authorDymacek, WMen_US
dc.contributor.authorFurer, Men_US
dc.contributor.authorKoerlin, Men_US
dc.contributor.authorLee, YSen_US
dc.contributor.authorWhaley, Ten_US
dc.date.accessioned2014-12-08T15:46:45Z-
dc.date.available2014-12-08T15:46:45Z-
dc.date.issued1999-03-28en_US
dc.identifier.issn0012-365Xen_US
dc.identifier.urihttp://hdl.handle.net/11536/31444-
dc.description.abstractWe characterize bipartite Steinhaus graphs in three ways by partitioning them into four classes and we describe the color sets for each of these classes. An interesting recursion had previously been given for the number of bipartite Steinhaus graphs and we give two fascinating closed forms for this recursion. Also, we exhibit a lower bound, which is achieved infinitely often, for the number of bipartite Steinhaus graphs. (C) 1999 Elsevier Science B.V. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectSteinhaus graphen_US
dc.subjectbipartite Steinhaus graphen_US
dc.subjectrecursive sequenceen_US
dc.titleCharacterizations of bipartite Steinhaus graphsen_US
dc.typeArticleen_US
dc.identifier.journalDISCRETE MATHEMATICSen_US
dc.citation.volume199en_US
dc.citation.issue1-3en_US
dc.citation.spage11en_US
dc.citation.epage25en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000079402000002-
dc.citation.woscount3-
Appears in Collections:Articles


Files in This Item:

  1. 000079402000002.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.