Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Chang, GJ | en_US |
dc.contributor.author | DasGupta, B | en_US |
dc.contributor.author | Dymacek, WM | en_US |
dc.contributor.author | Furer, M | en_US |
dc.contributor.author | Koerlin, M | en_US |
dc.contributor.author | Lee, YS | en_US |
dc.contributor.author | Whaley, T | en_US |
dc.date.accessioned | 2014-12-08T15:46:45Z | - |
dc.date.available | 2014-12-08T15:46:45Z | - |
dc.date.issued | 1999-03-28 | en_US |
dc.identifier.issn | 0012-365X | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/31444 | - |
dc.description.abstract | We characterize bipartite Steinhaus graphs in three ways by partitioning them into four classes and we describe the color sets for each of these classes. An interesting recursion had previously been given for the number of bipartite Steinhaus graphs and we give two fascinating closed forms for this recursion. Also, we exhibit a lower bound, which is achieved infinitely often, for the number of bipartite Steinhaus graphs. (C) 1999 Elsevier Science B.V. All rights reserved. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | Steinhaus graph | en_US |
dc.subject | bipartite Steinhaus graph | en_US |
dc.subject | recursive sequence | en_US |
dc.title | Characterizations of bipartite Steinhaus graphs | en_US |
dc.type | Article | en_US |
dc.identifier.journal | DISCRETE MATHEMATICS | en_US |
dc.citation.volume | 199 | en_US |
dc.citation.issue | 1-3 | en_US |
dc.citation.spage | 11 | en_US |
dc.citation.epage | 25 | en_US |
dc.contributor.department | 應用數學系 | zh_TW |
dc.contributor.department | Department of Applied Mathematics | en_US |
dc.identifier.wosnumber | WOS:000079402000002 | - |
dc.citation.woscount | 3 | - |
Appears in Collections: | Articles |
Files in This Item:
If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.