完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.author | Chang, GJ | en_US |
| dc.contributor.author | Liu, DDF | en_US |
| dc.contributor.author | Zhu, XD | en_US |
| dc.date.accessioned | 2014-12-08T15:46:46Z | - |
| dc.date.available | 2014-12-08T15:46:46Z | - |
| dc.date.issued | 1999-03-01 | en_US |
| dc.identifier.issn | 0095-8956 | en_US |
| dc.identifier.uri | http://dx.doi.org/10.1006/jctb.1998.1881 | en_US |
| dc.identifier.uri | http://hdl.handle.net/11536/31460 | - |
| dc.description.abstract | We discuss relationships among T-colorings of graphs and chromatic numbers, fractional chromatic numbers, and circular chromatic numbers of distance graphs. We first prove that for any finite integral set T that contains 0, the asymptotic T-coloring ratio R(T) is equal to the fractional chromatic number of the distance graph G(Z, D), where D = T-{0}. This fact is then used to study the distance graphs with distance sets of the form D-m,D- k = {1, 2, ..., m}- {k}. The chromatic numbers and the fractional chromatic numbers of G(Z, D-m,D- k) are determined for all values of m and k. Furthermore, circular chromatic numbers of G(Z, D-m,D- k) fur some special values of m and k are obtained. (C) 1999 Academic Press. | en_US |
| dc.language.iso | en_US | en_US |
| dc.title | Distance graphs and T-coloring | en_US |
| dc.type | Article | en_US |
| dc.identifier.doi | 10.1006/jctb.1998.1881 | en_US |
| dc.identifier.journal | JOURNAL OF COMBINATORIAL THEORY SERIES B | en_US |
| dc.citation.volume | 75 | en_US |
| dc.citation.issue | 2 | en_US |
| dc.citation.spage | 259 | en_US |
| dc.citation.epage | 269 | en_US |
| dc.contributor.department | 應用數學系 | zh_TW |
| dc.contributor.department | Department of Applied Mathematics | en_US |
| dc.identifier.wosnumber | WOS:000079054600007 | - |
| dc.citation.woscount | 21 | - |
| 顯示於類別: | 期刊論文 | |

