Full metadata record
DC FieldValueLanguage
dc.contributor.authorLu, XYen_US
dc.contributor.authorWang, DWen_US
dc.contributor.authorChang, GJen_US
dc.contributor.authorLin, IJen_US
dc.contributor.authorWong, CKen_US
dc.date.accessioned2014-12-08T15:46:52Z-
dc.date.available2014-12-08T15:46:52Z-
dc.date.issued1999-03-01en_US
dc.identifier.issn0364-9024en_US
dc.identifier.urihttp://hdl.handle.net/11536/31502-
dc.description.abstractIt is well known that every tournament contains a Hamiltonian path, which can be restated as that every tournament contains a unary spanning tree. The purpose of this article is to study the general problem of whether a tournament contains a k-ary spanning tree. In particular, we prove that, for any fixed positive integer k, there exists a minimum number h(k) such that every tournament of order at least h(k) contains a k-ary spanning tree. The existence of a Hamiltonian path for any tournament is the same as h(1) = 1. We then show that h(2) = 4 and h(3) = 8. The values of h(k) remain unknown for k greater than or equal to 4. (C) 1999 John Wiley & Sons. Inc. J Graph Theory 30: 167-176, 1999.en_US
dc.language.isoen_USen_US
dc.subjecttournamenten_US
dc.subjectspanning treeen_US
dc.subjectneighboren_US
dc.subjectHamiltonian pathen_US
dc.subjectrooted treeen_US
dc.subjectparenten_US
dc.subjectchilden_US
dc.subjectdepthen_US
dc.subjectheighten_US
dc.titleOn k-ary spanning trees of tournamentsen_US
dc.typeArticleen_US
dc.identifier.journalJOURNAL OF GRAPH THEORYen_US
dc.citation.volume30en_US
dc.citation.issue3en_US
dc.citation.spage167en_US
dc.citation.epage176en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000078782000002-
dc.citation.woscount0-
Appears in Collections:Articles


Files in This Item:

  1. 000078782000002.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.