Full metadata record
DC FieldValueLanguage
dc.contributor.authorChuah, MKen_US
dc.contributor.authorTeo, LPen_US
dc.date.accessioned2014-12-08T15:46:52Z-
dc.date.available2014-12-08T15:46:52Z-
dc.date.issued1999-03-01en_US
dc.identifier.issn0025-5874en_US
dc.identifier.urihttp://hdl.handle.net/11536/31504-
dc.description.abstractLet G be a complex connected semi-simple Lie group, with parabolic subgroup P. Let (P, P) be its commutator subgroup. The generalized Borel-Weil theorem on flag manifolds has an analogous result on the Dolbeault cohomology H-0,H-q(G/(P, P)). Consequently, the dimension of H-0,H-q(G/(P, P)) is either 0 or infinity. In this paper, we show that the Dolbeault operator <(partial derivative)over bar> has closed image, and apply the Peter-Weyl theorem to show how q determines the value 0 or infinity. For the case when P is maximal, we apply our result to compute the Dolbeault cohomology of certain examples, such as the punctured determinant bundle over the Grassmannian.en_US
dc.language.isoen_USen_US
dc.titleDolbeault cohomology of G/(P,P)en_US
dc.typeArticleen_US
dc.identifier.journalMATHEMATISCHE ZEITSCHRIFTen_US
dc.citation.volume230en_US
dc.citation.issue3en_US
dc.citation.spage595en_US
dc.citation.epage602en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000079431700010-
dc.citation.woscount0-
Appears in Collections:Articles


Files in This Item:

  1. 000079431700010.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.