Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Chuah, MK | en_US |
dc.contributor.author | Teo, LP | en_US |
dc.date.accessioned | 2014-12-08T15:46:52Z | - |
dc.date.available | 2014-12-08T15:46:52Z | - |
dc.date.issued | 1999-03-01 | en_US |
dc.identifier.issn | 0025-5874 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/31504 | - |
dc.description.abstract | Let G be a complex connected semi-simple Lie group, with parabolic subgroup P. Let (P, P) be its commutator subgroup. The generalized Borel-Weil theorem on flag manifolds has an analogous result on the Dolbeault cohomology H-0,H-q(G/(P, P)). Consequently, the dimension of H-0,H-q(G/(P, P)) is either 0 or infinity. In this paper, we show that the Dolbeault operator <(partial derivative)over bar> has closed image, and apply the Peter-Weyl theorem to show how q determines the value 0 or infinity. For the case when P is maximal, we apply our result to compute the Dolbeault cohomology of certain examples, such as the punctured determinant bundle over the Grassmannian. | en_US |
dc.language.iso | en_US | en_US |
dc.title | Dolbeault cohomology of G/(P,P) | en_US |
dc.type | Article | en_US |
dc.identifier.journal | MATHEMATISCHE ZEITSCHRIFT | en_US |
dc.citation.volume | 230 | en_US |
dc.citation.issue | 3 | en_US |
dc.citation.spage | 595 | en_US |
dc.citation.epage | 602 | en_US |
dc.contributor.department | 應用數學系 | zh_TW |
dc.contributor.department | Department of Applied Mathematics | en_US |
dc.identifier.wosnumber | WOS:000079431700010 | - |
dc.citation.woscount | 0 | - |
Appears in Collections: | Articles |
Files in This Item:
If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.