Full metadata record
DC FieldValueLanguage
dc.contributor.authorHWANG, RZen_US
dc.contributor.authorLEE, RCTen_US
dc.contributor.authorCHANG, RCen_US
dc.date.accessioned2014-12-08T15:04:40Z-
dc.date.available2014-12-08T15:04:40Z-
dc.date.issued1993-01-01en_US
dc.identifier.issn0178-4617en_US
dc.identifier.urihttp://dx.doi.org/10.1007/BF01185335en_US
dc.identifier.urihttp://hdl.handle.net/11536/3153-
dc.description.abstractGiven n demand points on the plane, the Euclidean P-Center problem is to find P supply points, such that the longest distance between each demand point and its closest supply point is minimized. The time complexity of the most efficient algorithm, up to now, is 0(n2P-1 . log n). In this paper, we present an algorithm with time complexity 0(n0(square-root P))).en_US
dc.language.isoen_USen_US
dc.subjectCOMPUTATIONAL GEOMETRYen_US
dc.subjectNP-COMPLETENESSen_US
dc.titleTHE SLAB DIVIDING APPROACH TO SOLVE THE EUCLIDEAN P-CENTER PROBLEMen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/BF01185335en_US
dc.identifier.journalALGORITHMICAen_US
dc.citation.volume9en_US
dc.citation.issue1en_US
dc.citation.spage1en_US
dc.citation.epage22en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:A1993KH91400001-
dc.citation.woscount26-
Appears in Collections:Articles


Files in This Item:

  1. A1993KH91400001.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.