Full metadata record
DC FieldValueLanguage
dc.contributor.authorFerng, WRen_US
dc.contributor.authorLin, WWen_US
dc.contributor.authorWang, CSen_US
dc.date.accessioned2014-12-08T15:47:06Z-
dc.date.available2014-12-08T15:47:06Z-
dc.date.issued1999-01-01en_US
dc.identifier.issn0898-1221en_US
dc.identifier.urihttp://hdl.handle.net/11536/31605-
dc.description.abstractThe solutions of a gyroscopic vibrating system oscillating about an equilibrium position, with no external applied forces and no damping forces, are completely determined by the quadratic eigenvalue problem (-lambda(i)(2)M + lambda(i)G + K)x(i) = 0, for i = 1, ..., 2n, where M, G, and K are real n x n matrices, and M is symmetric positive definite (denoted by M > 0), G is skew symmetric, and either K > 0 or -K > 0. Gyroscopic systemin motion about a stable equilibrium position (with -K > 0) are well understood. Two Lanczos-type algorithms, the pseudo skew symmetric Lanczos algorithm and the J-Lanczos algorithm, are studied for computing some extreme eigenpairs for solving gyroscopic systems in motion about an unstable equilibrium position (with K > 0). Shift and invert strategies, error bounds, implementation issues, and numerical results for both algorithms are presented in details. (C) 1998 Elsevier Science Ltd. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectgyroscopic systemen_US
dc.subjectLanczos algorithmen_US
dc.subjectHamiltonian matrixen_US
dc.subjectquadratic eigenvalue problemen_US
dc.subjectgeneralized eigenvalue problemen_US
dc.titleNumerical algorithms for undamped gyroscopic systemsen_US
dc.typeArticleen_US
dc.identifier.journalCOMPUTERS & MATHEMATICS WITH APPLICATIONSen_US
dc.citation.volume37en_US
dc.citation.issue1en_US
dc.citation.spage49en_US
dc.citation.epage66en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000077836900005-
dc.citation.woscount5-
Appears in Collections:Articles


Files in This Item:

  1. 000077836900005.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.