完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.author | Huang, T | en_US |
| dc.contributor.author | Liu, CR | en_US |
| dc.date.accessioned | 2014-12-08T15:47:08Z | - |
| dc.date.available | 2014-12-08T15:47:08Z | - |
| dc.date.issued | 1999 | en_US |
| dc.identifier.issn | 0911-0119 | en_US |
| dc.identifier.uri | http://hdl.handle.net/11536/31629 | - |
| dc.description.abstract | Suppose G is a connected, k-regular graph such that Spec(G) = Spec(Gamma) where Gamma is a distance-regular graph of diameter d with parameters a(1) = a(2) = ... = a(d-1) = 0 and a(d) > 0; i.e., a generalized odd graph, we show that G must be distance-regular with the same intersection array as that of Gamma in terms of the notion of Hoffman Polynomials. Furthermore, G is isomorphic to Gamma if Gamma is one of the odd polygon C2d+1 the Odd graph Od+1, the folded (2d + 1)-cube, the coset graph of binary Golay code (d = 3), the Hoffman-Singleton graph (d = 2), the Gewirtz graph (d = 2), the Higman-Sims graph (d = 2), or the second subconstituent of the Higman-Sims graph (d = 2). | en_US |
| dc.language.iso | en_US | en_US |
| dc.title | Spectral characterization of some generalized odd graphs | en_US |
| dc.type | Article | en_US |
| dc.identifier.journal | GRAPHS AND COMBINATORICS | en_US |
| dc.citation.volume | 15 | en_US |
| dc.citation.issue | 2 | en_US |
| dc.citation.spage | 195 | en_US |
| dc.citation.epage | 209 | en_US |
| dc.contributor.department | 應用數學系 | zh_TW |
| dc.contributor.department | Department of Applied Mathematics | en_US |
| dc.identifier.wosnumber | WOS:000081517700007 | - |
| dc.citation.woscount | 17 | - |
| 顯示於類別: | 期刊論文 | |

