完整後設資料紀錄
DC 欄位語言
dc.contributor.authorHuang, KYen_US
dc.date.accessioned2014-12-08T15:47:12Z-
dc.date.available2014-12-08T15:47:12Z-
dc.date.issued1999-01-01en_US
dc.identifier.issn0196-2892en_US
dc.identifier.urihttp://dx.doi.org/10.1109/36.739164en_US
dc.identifier.urihttp://hdl.handle.net/11536/31656-
dc.description.abstractThe neural network, using an unsupervised generalized Hebbian algorithm (GHA), is adopted to find the principal eigenvectors of a covariance matrix in different kinds of seismograms. We have shown that the extensive computer results of the principal components analysis (PCA) using the neural net of GHA can extract the information of seismic reflection layers and uniform neighboring traces. The analyzed seismic data are the seismic traces with 20-, 25-, and 30-Hz Ricker wavelets, the fault, the reflection and diffraction patterns after normal moveout (NMO) correction, the bright spot pattern, and the real seismogram at Mississippi Canyon. The properties of high amplitude, low frequency, and polarity reversal can be shown from the projections on the principal eigenvectors. For PCA, a theorem is proposed, which states that adding an extra point along the direction of the existing eigenvector can enhance that eigenvector. The theorem is applied to the interpretation of a fault seismogram and the uniform property of other seismograms. The PCA also provides a significant seismic data compression.en_US
dc.language.isoen_USen_US
dc.subjectdata compressionen_US
dc.subjecteigenvectorsen_US
dc.subjectgeneralized Hebbian algorithmen_US
dc.subjectneural networken_US
dc.subjectprincipal component analysis (PCA)en_US
dc.subjectRicker waveletsen_US
dc.subjectseismic interpretationen_US
dc.titleNeural networks for seismic principal components analysisen_US
dc.typeArticleen_US
dc.identifier.doi10.1109/36.739164en_US
dc.identifier.journalIEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSINGen_US
dc.citation.volume37en_US
dc.citation.issue1en_US
dc.citation.spage297en_US
dc.citation.epage311en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000078122300028-
dc.citation.woscount6-
顯示於類別:期刊論文


文件中的檔案:

  1. 000078122300028.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。