Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Hu, SJ | en_US |
dc.contributor.author | Juan, ST | en_US |
dc.contributor.author | Chang, GJ | en_US |
dc.date.accessioned | 2014-12-08T15:47:13Z | - |
dc.date.available | 2014-12-08T15:47:13Z | - |
dc.date.issued | 1999-01-01 | en_US |
dc.identifier.issn | 0911-0119 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/31671 | - |
dc.description.abstract | Suppose G is a graph and T is a set of non-negative integers that contains 0. A T-coloring of G is an assignment of a non-negative integer f(x) to each vertex x of G such that f(x) - f(y) is not an element of T whenever xy is an element of E(G). The edge span of a T-coloring f is the maximum value of f(x) - f(y) over all edges xy, and the T-edge span of a graph G is the minimum value of the edge span of a T-coloring of G. This paper studies the T-edge span of the dth power C-n(d) of the n-cycle C-n for T = {0, 1, 2, ..., k - 1}. In particular, we find the exact value of the T-edge span of C-n(d) for n = 0 or 1 (mod d + 1), and lower and upper bounds for other cases. | en_US |
dc.language.iso | en_US | en_US |
dc.title | T-colorings and T-edge spans of graphs | en_US |
dc.type | Article | en_US |
dc.identifier.journal | GRAPHS AND COMBINATORICS | en_US |
dc.citation.volume | 15 | en_US |
dc.citation.issue | 3 | en_US |
dc.citation.spage | 295 | en_US |
dc.citation.epage | 301 | en_US |
dc.contributor.department | 應用數學系 | zh_TW |
dc.contributor.department | Department of Applied Mathematics | en_US |
Appears in Collections: | Articles |
Files in This Item:
If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.