Full metadata record
DC FieldValueLanguage
dc.contributor.authorKe, JYen_US
dc.contributor.authorTsay, JCen_US
dc.date.accessioned2014-12-08T15:47:22Z-
dc.date.available2014-12-08T15:47:22Z-
dc.date.issued1998-12-01en_US
dc.identifier.issn1016-2364en_US
dc.identifier.urihttp://hdl.handle.net/11536/31753-
dc.description.abstractThe mapping of an n-dimensional uniform dependence algorithm onto a linear processor array can be considered as a linear transformation problem. However, to find a linear space-optimal transformation is difficult because the conditions for checking a correct mapping and the space cost function do not have closed-form expressions, especially when the index set J of an n-dimensional algorithm is of an arbitrary bounded convex index set. In this paper, we propose an enumeration method to find a space-optimal PE allocation vector for mapping an n-dimensional uniform dependence algorithm with an arbitrary bounded convex index set onto a linear processor array, assuming that a linear schedule is given a priori.en_US
dc.language.isoen_USen_US
dc.subjectuniform dependence algorithmsen_US
dc.subjectlinear scheduleen_US
dc.subjectallocation vectoren_US
dc.subjectnormen_US
dc.subjectspace optimalen_US
dc.titleFinding space-optimal linear array for uniform dependence algorithms with arbitrary convex index setsen_US
dc.typeArticleen_US
dc.identifier.journalJOURNAL OF INFORMATION SCIENCE AND ENGINEERINGen_US
dc.citation.volume14en_US
dc.citation.issue4en_US
dc.citation.spage743en_US
dc.citation.epage763en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000077995800004-
dc.citation.woscount0-
Appears in Collections:Articles


Files in This Item:

  1. 000077995800004.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.