Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Ke, JY | en_US |
dc.contributor.author | Tsay, JC | en_US |
dc.date.accessioned | 2014-12-08T15:47:22Z | - |
dc.date.available | 2014-12-08T15:47:22Z | - |
dc.date.issued | 1998-12-01 | en_US |
dc.identifier.issn | 1016-2364 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/31753 | - |
dc.description.abstract | The mapping of an n-dimensional uniform dependence algorithm onto a linear processor array can be considered as a linear transformation problem. However, to find a linear space-optimal transformation is difficult because the conditions for checking a correct mapping and the space cost function do not have closed-form expressions, especially when the index set J of an n-dimensional algorithm is of an arbitrary bounded convex index set. In this paper, we propose an enumeration method to find a space-optimal PE allocation vector for mapping an n-dimensional uniform dependence algorithm with an arbitrary bounded convex index set onto a linear processor array, assuming that a linear schedule is given a priori. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | uniform dependence algorithms | en_US |
dc.subject | linear schedule | en_US |
dc.subject | allocation vector | en_US |
dc.subject | norm | en_US |
dc.subject | space optimal | en_US |
dc.title | Finding space-optimal linear array for uniform dependence algorithms with arbitrary convex index sets | en_US |
dc.type | Article | en_US |
dc.identifier.journal | JOURNAL OF INFORMATION SCIENCE AND ENGINEERING | en_US |
dc.citation.volume | 14 | en_US |
dc.citation.issue | 4 | en_US |
dc.citation.spage | 743 | en_US |
dc.citation.epage | 763 | en_US |
dc.contributor.department | 資訊工程學系 | zh_TW |
dc.contributor.department | Department of Computer Science | en_US |
dc.identifier.wosnumber | WOS:000077995800004 | - |
dc.citation.woscount | 0 | - |
Appears in Collections: | Articles |
Files in This Item:
If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.