完整後設資料紀錄
DC 欄位語言
dc.contributor.authorTrappey, Amy J. C.en_US
dc.contributor.authorTrappey, Charles V.en_US
dc.contributor.authorWu, Chang-Ruen_US
dc.date.accessioned2014-12-08T15:47:58Z-
dc.date.available2014-12-08T15:47:58Z-
dc.date.issued2010-11-01en_US
dc.identifier.issn0957-4174en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.eswa.2010.04.026en_US
dc.identifier.urihttp://hdl.handle.net/11536/32021-
dc.description.abstractEnvironmental awareness, green directives, liberal return policies, and recycling of materials are globally accepted by industry and the general public as an integral part of the product life cycle. Reverse logistics reflects the acceptance of new policies by analyzing the processes associated with the flow of products, components and materials from end users to re-users consisting of second markets and remanufacturing. The components may be widely dispersed during reverse logistics. Radio frequency identification (RFID) complying with the EPCglobal (2004) Network architecture, i.e., a hardware- and software-integrated cross-platform IT framework, is adopted to better enable data collection and transmission in reverse logistic management. This research develops a hybrid qualitative and quantitative approach, using fuzzy cognitive maps and genetic algorithms, to model and evaluate the performance of RFID-enabled reverse logistic operations (The framework revisited here was published as "Using fuzzy cognitive map for evaluation of RFID-based reverse logistics services", Proceedings of the 2009 international conference on systems, man, and cybernetics (Paper No. 741), October 11-14, 2009, San Antonio, Texas, USA). Fuzzy cognitive maps provide an advantage to linguistically express the causal relationships between reverse logistic parameters. Inference analysis using genetic algorithms contributes to the performance forecasting and decision support for improving reverse logistic efficiency. (C) 2010 Elsevier Ltd. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectReverse logisticsen_US
dc.subjectRadio frequency identification (RFID)en_US
dc.subjectFuzzy cognitive mapsen_US
dc.subjectGenetic algorithmen_US
dc.titleGenetic algorithm dynamic performance evaluation for RFID reverse logistic managementen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.eswa.2010.04.026en_US
dc.identifier.journalEXPERT SYSTEMS WITH APPLICATIONSen_US
dc.citation.volume37en_US
dc.citation.issue11en_US
dc.citation.spage7329en_US
dc.citation.epage7335en_US
dc.contributor.department管理科學系zh_TW
dc.contributor.departmentDepartment of Management Scienceen_US
dc.identifier.wosnumberWOS:000281103600005-
dc.citation.woscount16-
顯示於類別:期刊論文


文件中的檔案:

  1. 000281103600005.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。