Full metadata record
DC FieldValueLanguage
dc.contributor.authorLai, Yi-Hsuanen_US
dc.contributor.authorChen, Lin-Anen_US
dc.contributor.authorTang, Chau-Shyunen_US
dc.date.accessioned2014-12-08T15:48:03Z-
dc.date.available2014-12-08T15:48:03Z-
dc.date.issued2010-11-01en_US
dc.identifier.issn0378-3758en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.jspi.2010.05.015en_US
dc.identifier.urihttp://hdl.handle.net/11536/32041-
dc.description.abstractFor the linear regression with AR(1) errors model, the robust generalized and feasible generalized estimators of Lai et al. (2003) of regression parameters are shown to have the desired property of a robust Gauss Markov theorem. This is done by showing that these two estimators are the best among classes of linear trimmed means. Monte Carlo and data analysis for this technique have been performed. (C) 2010 Elsevier B.V. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectGauss Markov theoremen_US
dc.subjectGeneralized least squares estimatoren_US
dc.subjectLinear trimmed meanen_US
dc.subjectRobust estimatoren_US
dc.titleLinear trimmed means for the linear regression with AR(1) errors modelen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.jspi.2010.05.015en_US
dc.identifier.journalJOURNAL OF STATISTICAL PLANNING AND INFERENCEen_US
dc.citation.volume140en_US
dc.citation.issue11en_US
dc.citation.spage3457en_US
dc.citation.epage3467en_US
dc.contributor.department統計學研究所zh_TW
dc.contributor.department管理科學系zh_TW
dc.contributor.departmentInstitute of Statisticsen_US
dc.contributor.departmentDepartment of Management Scienceen_US
dc.identifier.wosnumberWOS:000279997000045-
dc.citation.woscount0-
Appears in Collections:Articles


Files in This Item:

  1. 000279997000045.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.