完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | Hsueh, Ching-Yi | en_US |
dc.contributor.author | Chu, Hsin-Sen | en_US |
dc.contributor.author | Yan, Wei-Mon | en_US |
dc.contributor.author | Chen, Chiun-Hsun | en_US |
dc.date.accessioned | 2014-12-08T15:48:07Z | - |
dc.date.available | 2014-12-08T15:48:07Z | - |
dc.date.issued | 2010-10-01 | en_US |
dc.identifier.issn | 0306-2619 | en_US |
dc.identifier.uri | http://dx.doi.org/10.1016/j.apenergy.2010.02.027 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/32096 | - |
dc.description.abstract | A numerical investigation of the transport phenomena and performance of a plate methanol steam micro-reformer with serpentine flow field as a function of wall temperature, fuel ratio and Reynolds number are presented. The fuel Reynolds number and H(2)O/CH(3)OH molar ratio (S/C) that influence the transport phenomena and methanol conversion are explored in detail. In addition, the effects of various wall temperatures on the plates that heat the channel are also investigated. The predictions show that conduction through the wall plays a significant effect on the temperature distribution and must be considered in the modeling. The predictions also indicate that a higher wall temperature enhances the chemical reaction rate which, in turn, significantly increases the methanol conversion. The methanol conversion is also improved by decreasing the Reynolds number or increasing the S/C molar ratio. When the serpentine flow field of the channel is heated either through top plate (Y = 1) or the bottom plate (Y = 0), we observe a higher degree of methanol conversion for the case with top plate heating. This is due to the stronger chemical reaction for the case with top plate heating. (C) 2010 Published by Elsevier Ltd. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | Micro-reformer | en_US |
dc.subject | Serpentine flow field | en_US |
dc.subject | Three-dimensional model | en_US |
dc.subject | Transport phenomena | en_US |
dc.title | Transport phenomena and performance of a plate methanol steam micro-reformer with serpentine flow field design | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1016/j.apenergy.2010.02.027 | en_US |
dc.identifier.journal | APPLIED ENERGY | en_US |
dc.citation.volume | 87 | en_US |
dc.citation.issue | 10 | en_US |
dc.citation.spage | 3137 | en_US |
dc.citation.epage | 3147 | en_US |
dc.contributor.department | 機械工程學系 | zh_TW |
dc.contributor.department | Department of Mechanical Engineering | en_US |
顯示於類別: | 期刊論文 |