Full metadata record
DC FieldValueLanguage
dc.contributor.authorKiriki, Shinen_US
dc.contributor.authorLi, Ming-Chiaen_US
dc.contributor.authorSoma, Teruhikoen_US
dc.date.accessioned2014-12-08T15:48:25Z-
dc.date.available2014-12-08T15:48:25Z-
dc.date.issued2010-09-01en_US
dc.identifier.issn0951-7715en_US
dc.identifier.urihttp://dx.doi.org/10.1088/0951-7715/23/9/010en_US
dc.identifier.urihttp://hdl.handle.net/11536/32257-
dc.description.abstractLet {f(a,b)} be the (original) Henon family. In this paper, we show that, for any b near 0, there exists a closed interval J(b) which contains a dense subset J' such that, for any a is an element of J', f(a,b) has a quadratic homoclinic tangency associated with a saddle fixed point of f(a,b) which unfolds generically with respect to the one-parameter family {f(a,b)}(a is an element of Jb). By applying this result, we prove that J(b) contains a residual subset A(b)((2)) such that, for any a is an element of A(n)((2)), f(a,b) admits the Newhouse phenomenon. Moreover, the interval Jb contains a dense subset (A) over tilde (b) such that, for any a is an element of (A) over tilde (b), f(a,b) has a large homoclinic set without SRB measure and a small strange attractor with SRB measure simultaneously.en_US
dc.language.isoen_USen_US
dc.titleCoexistence of invariant sets with and without SRB measures in Henon familyen_US
dc.typeArticleen_US
dc.identifier.doi10.1088/0951-7715/23/9/010en_US
dc.identifier.journalNONLINEARITYen_US
dc.citation.volume23en_US
dc.citation.issue9en_US
dc.citation.spage2253en_US
dc.citation.epage2269en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000280766900010-
dc.citation.woscount1-
Appears in Collections:Articles


Files in This Item:

  1. 000280766900010.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.