Full metadata record
DC FieldValueLanguage
dc.contributor.authorHsu, Chun-Chinen_US
dc.contributor.authorChen, Mu-Chenen_US
dc.contributor.authorChen, Long-Shengen_US
dc.date.accessioned2014-12-08T15:48:36Z-
dc.date.available2014-12-08T15:48:36Z-
dc.date.issued2010-08-01en_US
dc.identifier.issn0360-8352en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.cie.2010.03.011en_US
dc.identifier.urihttp://hdl.handle.net/11536/32330-
dc.description.abstractThis study aims to develop an intelligent algorithm by integrating the independent component analysis (ICA) and support vector machine (SVM) for monitoring multivariate processes. For developing a successful SVM-based fault detector, the first step is feature extraction. In real industrial processes, process variables are rarely Gaussian distributed. Thus, this study proposes the application of ICA to extract the hidden information of a non-Gaussian process before conducting SVM. The proposed fault detector will be implemented via two simulated processes and a case study of the Tennessee Eastman process. Results demonstrate that the proposed method possesses superior fault detection when compared to conventional monitoring methods, including PCA, ICA, modified ICA, ICA-PCA and PCA-SVM. Crown Copyright (C) 2010 Published by Elsevier Ltd. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectICAen_US
dc.subjectPCAen_US
dc.subjectSVMen_US
dc.subjectTE processen_US
dc.subjectFault detection rateen_US
dc.titleIntegrating independent component analysis and support vector machine for multivariate process monitoringen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.cie.2010.03.011en_US
dc.identifier.journalCOMPUTERS & INDUSTRIAL ENGINEERINGen_US
dc.citation.volume59en_US
dc.citation.issue1en_US
dc.citation.spage145en_US
dc.citation.epage156en_US
dc.contributor.department運輸與物流管理系 註:原交通所+運管所zh_TW
dc.contributor.departmentDepartment of Transportation and Logistics Managementen_US
dc.identifier.wosnumberWOS:000278883100017-
dc.citation.woscount10-
Appears in Collections:Articles


Files in This Item:

  1. 000278883100017.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.