Full metadata record
DC FieldValueLanguage
dc.contributor.authorChang, Tzu-Haoen_US
dc.contributor.authorWu, Li-Chingen_US
dc.contributor.authorLin, Jun-Hongen_US
dc.contributor.authorHuang, Hsien-Daen_US
dc.contributor.authorLiu, Baw-Jhiuneen_US
dc.contributor.authorCheng, Kuang-Fuen_US
dc.contributor.authorHorng, Jorng-Tzongen_US
dc.date.accessioned2014-12-08T15:48:38Z-
dc.date.available2014-12-08T15:48:38Z-
dc.date.issued2010-08-01en_US
dc.identifier.issn0957-4174en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.eswa.2010.02.058en_US
dc.identifier.urihttp://hdl.handle.net/11536/32360-
dc.description.abstractSmall non-coding RNA genes have been shown to play important regulatory roles in a variety of cellular processes, but prediction of non-coding RNA genes is a great challenge, using either an experimental or a computational approach, due to the characteristics of sRNAs, which are that sRNAs are small in size, are not translated into proteins and show variable stability. Most known sRNAs have been identified in Escherichia coli and have been shown to be conserved in closely related organisms. We have developed an integrative approach that searches highly conserved intergenic regions among related bacterial genomes for combinations of characteristics that have been extracted from known E. coli sRNA genes. Support vector machines (SVM) were then used with these characteristics to predict novel sRNA genes. (c) 2010 Elsevier Ltd. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectExpert systemsen_US
dc.subjectSupport vector machinesen_US
dc.subjectMachine learningen_US
dc.subjectBioinformaticsen_US
dc.subjectNon-coding RNAen_US
dc.titlePrediction of small non-coding RNA in bacterial genomes using support vector machinesen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.eswa.2010.02.058en_US
dc.identifier.journalEXPERT SYSTEMS WITH APPLICATIONSen_US
dc.citation.volume37en_US
dc.citation.issue8en_US
dc.citation.spage5549en_US
dc.citation.epage5557en_US
dc.contributor.department生物資訊及系統生物研究所zh_TW
dc.contributor.departmentInstitude of Bioinformatics and Systems Biologyen_US
dc.identifier.wosnumberWOS:000278376100003-
dc.citation.woscount5-
Appears in Collections:Articles


Files in This Item:

  1. 000278376100003.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.