Full metadata record
DC FieldValueLanguage
dc.contributor.authorLin, Chi-Kunen_US
dc.contributor.authorWu, Kung-Chienen_US
dc.date.accessioned2014-12-08T15:48:43Z-
dc.date.available2014-12-08T15:48:43Z-
dc.date.issued2010-08-01en_US
dc.identifier.issn0003-9527en_US
dc.identifier.urihttp://dx.doi.org/10.1007/s00205-010-0324-8en_US
dc.identifier.urihttp://hdl.handle.net/11536/32388-
dc.description.abstractWe establish the singular limits, including semiclassical, nonrelativistic and nonrelativistic-semiclassical limits, of the Cauchy problem for the modulated defocusing nonlinear Klein-Gordon equation. For the semiclassical limit, h -> 0, we show that the limit wave function of the modulated defocusing cubic nonlinear Klein-Gordon equation solves the relativistic wave map and the associated phase function satisfies a linear relativistic wave equation. The nonrelativistic limit, c -> infinity, of the modulated defocusing nonlinear Klein-Gordon equation is the defocusing nonlinear Schrodinger equation. The nonrelativistic-semiclassical limit, h -> 0, c = h (-alpha) -> infinity for some alpha > 0, of the modulated defocusing cubic nonlinear Klein-Gordon equation is the classical wave map for the limit wave function and a typical linear wave equation for the associated phase function.en_US
dc.language.isoen_USen_US
dc.titleSingular Limits of the Klein-Gordon Equationen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s00205-010-0324-8en_US
dc.identifier.journalARCHIVE FOR RATIONAL MECHANICS AND ANALYSISen_US
dc.citation.volume197en_US
dc.citation.issue2en_US
dc.citation.spage689en_US
dc.citation.epage711en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.department數學建模與科學計算所(含中心)zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.contributor.departmentGraduate Program of Mathematical Modeling and Scientific Computing, Department of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000279077600009-
dc.citation.woscount5-
Appears in Collections:Articles


Files in This Item:

  1. 000279077600009.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.