完整後設資料紀錄
DC 欄位語言
dc.contributor.authorWang, CHen_US
dc.contributor.authorHong, TPen_US
dc.contributor.authorTseng, SSen_US
dc.contributor.authorLiao, CMen_US
dc.date.accessioned2014-12-08T15:48:51Z-
dc.date.available2014-12-08T15:48:51Z-
dc.date.issued1998-08-01en_US
dc.identifier.issn1094-6977en_US
dc.identifier.urihttp://dx.doi.org/10.1109/5326.704591en_US
dc.identifier.urihttp://hdl.handle.net/11536/32476-
dc.description.abstractIn this paper, an actual knowledge application is made by means of evolution paradigms in terms of knowledge acquisition. rin automatic knowledge integration approach in a distributed-knowledge environment is thus proposed to integrate multiple rule sets into a single effective rule set. The proposed approach consists of two phases: knowledge encoding and knowledge integration. In the encoding phase, each knowledge input is translated and expressed as a rule set, then encoded as a bit string. The combined bit strings from multiple knowledge inputs form an initial knowledge population, which is then ready for integration. In the knowledge integration phase, a genetic search technique generates an optimal or nearly optimal rule set from these initial knowledge-input strings. Finally, experimental results from diagnosis of brain tumors show that the rule set derived by the proposed approach is much more accurate than each initial rule set.en_US
dc.language.isoen_USen_US
dc.titleAutomatically integrating multiple rule sets in a distributed-knowledge environmenten_US
dc.typeArticleen_US
dc.identifier.doi10.1109/5326.704591en_US
dc.identifier.journalIEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART C-APPLICATIONS AND REVIEWSen_US
dc.citation.volume28en_US
dc.citation.issue3en_US
dc.citation.spage471en_US
dc.citation.epage476en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000075010400015-
dc.citation.woscount22-
顯示於類別:期刊論文


文件中的檔案:

  1. 000075010400015.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。