Full metadata record
DC FieldValueLanguage
dc.contributor.authorLee, YGen_US
dc.contributor.authorLee, JHen_US
dc.contributor.authorHsueh, YCen_US
dc.date.accessioned2014-12-08T15:48:51Z-
dc.date.available2014-12-08T15:48:51Z-
dc.date.issued1998-08-01en_US
dc.identifier.issn0925-2312en_US
dc.identifier.urihttp://dx.doi.org/10.1016/S0925-2312(97)00095-7en_US
dc.identifier.urihttp://hdl.handle.net/11536/32477-
dc.description.abstractA new method using fuzzy uncertainty, which measures the uncertainty of the uniform surface in an image, is proposed for texture analysis. A grey-scale image can be transformed into a fuzzy image by the uncertainty definition. The distribution of the membership in a measured fuzzy image, denoted by the fuzzy uncertainty texture spectrum (FUTS), is used as the texture feature for texture analysis. To evaluate the performance of the proposed method, supervised texture classification and rotated texture classification are applied. Experimental results reveal high-accuracy classification rates and show that the proposed method is a good tool for texture analysis. (C) 1998 Elsevier Science B.V. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectfuzzy set theoryen_US
dc.subjecttexture classificationen_US
dc.subjectuniform surface uncertaintyen_US
dc.titleTexture classification using fuzzy uncertainty texture spectrumen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/S0925-2312(97)00095-7en_US
dc.identifier.journalNEUROCOMPUTINGen_US
dc.citation.volume20en_US
dc.citation.issue1-3en_US
dc.citation.spage115en_US
dc.citation.epage122en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000076039200011-
dc.citation.woscount16-
Appears in Collections:Articles


Files in This Item:

  1. 000076039200011.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.