完整後設資料紀錄
DC 欄位語言
dc.contributor.authorChang, DCen_US
dc.contributor.authorWu, WRen_US
dc.date.accessioned2014-12-08T15:48:51Z-
dc.date.available2014-12-08T15:48:51Z-
dc.date.issued1998-08-01en_US
dc.identifier.issn0278-0062en_US
dc.identifier.urihttp://hdl.handle.net/11536/32478-
dc.description.abstractThe adaptive contrast enhancement (ACE) algorithm, which uses contrast gains (CG's) to adjust the high-frequency components of images, is a well-known technique for medical image processing. Conventionally, the CG is either a constant or inversely proportional to the local standard deviation (LSD), However, it is known that conventional approaches entail noise overenhancement and ringing artifacts, In this paper, we present a new ACE algorithm that eliminates these problems. First, a mathematical model for the LSD distribution is proposed by extending Hunt's image model. Then, the CG is formulated as a function of the LSD. The function, which is nonlinear, is determined by the transformation between the LSD histogram and a desired LSD distribution. Using our formulation, it can be shown that conventional ACE's use linear functions to compute the new CG's, It is the proposed nonlinear function that produces an adequate CG resulting in little noise overenhancement and fewer ringing artifacts. Finally, simulations using some X-ray images are provided to demonstrate the effectiveness of our new algorithm.en_US
dc.language.isoen_USen_US
dc.subjectadaptive contrast enhancementen_US
dc.subjecthistogram transformationen_US
dc.subjectlocal standard deviation (LSD)en_US
dc.subjectradiographyen_US
dc.titleImage contrast enhancement based on a histogram transformation of local standard deviationen_US
dc.typeArticleen_US
dc.identifier.journalIEEE TRANSACTIONS ON MEDICAL IMAGINGen_US
dc.citation.volume17en_US
dc.citation.issue4en_US
dc.citation.spage518en_US
dc.citation.epage531en_US
dc.contributor.department電信工程研究所zh_TW
dc.contributor.departmentInstitute of Communications Engineeringen_US
dc.identifier.wosnumberWOS:000077115900004-
dc.citation.woscount80-
顯示於類別:期刊論文


文件中的檔案:

  1. 000077115900004.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。