Full metadata record
DC FieldValueLanguage
dc.contributor.authorYang, SYen_US
dc.date.accessioned2014-12-08T15:48:56Z-
dc.date.available2014-12-08T15:48:56Z-
dc.date.issued1998-07-01en_US
dc.identifier.issn0096-3003en_US
dc.identifier.urihttp://hdl.handle.net/11536/32545-
dc.description.abstractA general framework of the theoretical analysis for the convergence and stability of the standard least squares finite element approximations to boundary value problems of first-order linear elliptic systems is established in a natural norm. With a suitable density assumption, the standard least squares method is proved to be convergent without requiring extra smoothness of the exact solutions. The method is also shown to be stable with respect to the natural norm. Some representative problems such as the grad-div type problems and the Stokes problem are demonstrated. (C) 1998 Published by Elsevier Science Inc. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectleast squaresen_US
dc.subjectfinite elementsen_US
dc.subjectconvergenceen_US
dc.subjectstabilityen_US
dc.titleOn the convergence and stability of the standard least squares finite element method for first-order elliptic systemsen_US
dc.typeArticleen_US
dc.identifier.journalAPPLIED MATHEMATICS AND COMPUTATIONen_US
dc.citation.volume93en_US
dc.citation.issue1en_US
dc.citation.spage51en_US
dc.citation.epage62en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000074276700004-
dc.citation.woscount3-
Appears in Collections:Articles


Files in This Item:

  1. 000074276700004.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.