完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.author | Liaw, SC | en_US |
| dc.contributor.author | Yeh, HG | en_US |
| dc.contributor.author | Hwang, FK | en_US |
| dc.contributor.author | Chang, GJ | en_US |
| dc.date.accessioned | 2014-12-08T15:49:03Z | - |
| dc.date.available | 2014-12-08T15:49:03Z | - |
| dc.date.issued | 1998-06-01 | en_US |
| dc.identifier.issn | 0002-9939 | en_US |
| dc.identifier.uri | http://hdl.handle.net/11536/32593 | - |
| dc.description.abstract | Kreweras considered the problem of counting noncrossing partitions of the set {1, 2, ..., n}, whose elements are arranged into a cycle in its natural order, into p parts of given sizes n(1), n(2), ..., n(p) (but not specifying which part gets which size). He gave a beautiful and surprising result whose proof resorts to a recurrence relation. In this paper we give a direct, entirely bijective, proof starting from the same initial idea as Kreweras' proof. | en_US |
| dc.language.iso | en_US | en_US |
| dc.title | A simple and direct derivation for the number of noncrossing partitions | en_US |
| dc.type | Article | en_US |
| dc.identifier.journal | PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY | en_US |
| dc.citation.volume | 126 | en_US |
| dc.citation.issue | 6 | en_US |
| dc.citation.spage | 1579 | en_US |
| dc.citation.epage | 1581 | en_US |
| dc.contributor.department | 應用數學系 | zh_TW |
| dc.contributor.department | Department of Applied Mathematics | en_US |
| dc.identifier.wosnumber | WOS:000073792900001 | - |
| dc.citation.woscount | 2 | - |
| 顯示於類別: | 期刊論文 | |

