完整後設資料紀錄
DC 欄位語言
dc.contributor.authorLiaw, SCen_US
dc.contributor.authorYeh, HGen_US
dc.contributor.authorHwang, FKen_US
dc.contributor.authorChang, GJen_US
dc.date.accessioned2014-12-08T15:49:03Z-
dc.date.available2014-12-08T15:49:03Z-
dc.date.issued1998-06-01en_US
dc.identifier.issn0002-9939en_US
dc.identifier.urihttp://hdl.handle.net/11536/32593-
dc.description.abstractKreweras considered the problem of counting noncrossing partitions of the set {1, 2, ..., n}, whose elements are arranged into a cycle in its natural order, into p parts of given sizes n(1), n(2), ..., n(p) (but not specifying which part gets which size). He gave a beautiful and surprising result whose proof resorts to a recurrence relation. In this paper we give a direct, entirely bijective, proof starting from the same initial idea as Kreweras' proof.en_US
dc.language.isoen_USen_US
dc.titleA simple and direct derivation for the number of noncrossing partitionsen_US
dc.typeArticleen_US
dc.identifier.journalPROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETYen_US
dc.citation.volume126en_US
dc.citation.issue6en_US
dc.citation.spage1579en_US
dc.citation.epage1581en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000073792900001-
dc.citation.woscount2-
顯示於類別:期刊論文


文件中的檔案:

  1. 000073792900001.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。