Full metadata record
DC FieldValueLanguage
dc.contributor.authorWang, YJen_US
dc.contributor.authorLin, CTen_US
dc.date.accessioned2014-12-08T15:49:15Z-
dc.date.available2014-12-08T15:49:15Z-
dc.date.issued1998-03-01en_US
dc.identifier.issn1045-9227en_US
dc.identifier.urihttp://dx.doi.org/10.1109/72.661124en_US
dc.identifier.urihttp://hdl.handle.net/11536/32735-
dc.description.abstractThis paper proposes the Runge-Kutta neural networks (RKNN's) for identification of unknown dynamical systems described by ordinary differential equations (i.e., ordinary differential equation or ODE systems) in high accuracy. These networks are constructed according to the Runge-Kutta approximation method. The main attraction of the RKNN's is that they precisely estimate the changing rates of system states (i.e., the right-hand side of the ODE (x) over dot = f(x)) directly in their subnetworks based on the space-domain interpolation within one sampling interval such that they can do long-term prediction of system state trajectories. We show theoretically the superior generalization and long-term prediction capability of the RKNN's over the normal neural networks. Two types of learning algorithms are investigated for the RKNN's, gradient-and nonlinear recursive least-squares-based algorithms. Convergence analysis of the learning algorithms is done theoretically, Computer simulations demonstrate the proved properties of the RKNN's.en_US
dc.language.isoen_USen_US
dc.subjectcontraction mappingen_US
dc.subjectgradient descenten_US
dc.subjectnonlinear recursive least squareen_US
dc.subjectradial-basis functionen_US
dc.subjectRunge-Kutta methoden_US
dc.subjectVander Pol's equationen_US
dc.titleRunge-Kutta neural network for identification of dynamical systems in high accuracyen_US
dc.typeArticleen_US
dc.identifier.doi10.1109/72.661124en_US
dc.identifier.journalIEEE TRANSACTIONS ON NEURAL NETWORKSen_US
dc.citation.volume9en_US
dc.citation.issue2en_US
dc.citation.spage294en_US
dc.citation.epage307en_US
dc.contributor.department電控工程研究所zh_TW
dc.contributor.departmentInstitute of Electrical and Control Engineeringen_US
dc.identifier.wosnumberWOS:000072350000006-
dc.citation.woscount31-
Appears in Collections:Articles


Files in This Item:

  1. 000072350000006.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.