完整後設資料紀錄
DC 欄位語言
dc.contributor.authorSong, KTen_US
dc.contributor.authorSun, WYen_US
dc.date.accessioned2014-12-08T15:49:18Z-
dc.date.available2014-12-08T15:49:18Z-
dc.date.issued1998-03-01en_US
dc.identifier.issn0921-0296en_US
dc.identifier.urihttp://hdl.handle.net/11536/32779-
dc.description.abstractConventional robot control schemes are basically model-based methods. However, exact modeling of robot dynamics poses considerable problems and faces various uncertainties in task execution. This paper proposes a reinforcement learning control approach for overcoming such drawbacks. An artificial neural network (ANN) serves as the learning structure, and an applied stochastic real-valued (SRV) unit as the learning method. Initially, force tracking control of a two-link robot arm is simulated to verify the control design. The simulation results confirm that even without information related to the robot dynamic model and environment states, operation rules for simultaneous controlling force and velocity are achievable by repetitive exploration. Hitherto, however, an acceptable performance has demanded many learning iterations and the learning speed proved too slow for practical applications. The approach herein, therefore, improves the tracking performance by combining a conventional controller with a reinforcement learning strategy. Experimental results demonstrate improved trajectory tracking performance of a two-link direct-drive robot manipulator using the proposed method.en_US
dc.language.isoen_USen_US
dc.subjectartificial neural networken_US
dc.subjectdynamic controlen_US
dc.subjectreinforcement learningen_US
dc.subjectrobot controlen_US
dc.titleRobot control optimization using reinforcement learningen_US
dc.typeArticleen_US
dc.identifier.journalJOURNAL OF INTELLIGENT & ROBOTIC SYSTEMSen_US
dc.citation.volume21en_US
dc.citation.issue3en_US
dc.citation.spage221en_US
dc.citation.epage238en_US
dc.contributor.department電控工程研究所zh_TW
dc.contributor.departmentInstitute of Electrical and Control Engineeringen_US
dc.identifier.wosnumberWOS:000072494900002-
dc.citation.woscount6-
顯示於類別:期刊論文


文件中的檔案:

  1. 000072494900002.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。